A162346 Number of reduced words of length n in the Weyl group D_18.
1, 18, 170, 1122, 5813, 25176, 94791, 318630, 974643, 2752112, 7253764, 18003544, 42378246, 95162260, 204856291, 424515042, 849825768, 1648470894, 3106669574, 5701318526, 10209535012, 17871859722, 30631153147, 51476598044, 84931517948, 137735283228, 219783774729
Offset: 0
References
- N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
- J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
Links
Crossrefs
Row 18 of A162206.
Growth series for groups D_n, n = 3,...,50: A161435, A162207, A162208, A162209, A162210, A162211, A162212, A162248, A162288, A162297, A162300, A162301, A162321, A162327, A162328, A162346, A162347, A162359, A162360, A162364, A162365, A162366, A162367, A162368, A162369, A162370, A162376, A162377, A162378, A162379, A162380, A162381, A162384, A162388, A162389, A162392, A162399, A162402, A162403, A162411, A162412, A162413, A162418, A162452, A162456, A162461, A162469, A162492.
Programs
-
Maple
# Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021 f := proc(m::integer) (1-x^m)/(1-x) ; end proc: g := proc(k,M) local a,i; global f; a:=f(k)*mul(f(2*i),i=1..k-1); seriestolist(series(a,x,M+1)); end proc;
Formula
The growth series for D_k is the polynomial f(k)*Prod_{i=1..k-1} f(2*i), where f(m) = (1-x^m)/(1-x) [Corrected by N. J. A. Sloane, Aug 07 2021]. This is a row of the triangle in A162206.