cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162360 Number of reduced words of length n in the Weyl group D_21.

Original entry on oeis.org

1, 21, 230, 1750, 10394, 51338, 219373, 833129, 2867249, 9073845, 26706681, 73769301, 192639951, 478480891, 1136148412, 2590157556, 5690334091, 12085148911, 24881271591, 49780020675, 96990931345, 184385864444, 342595978914, 623097897805, 1110823232734
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 01 2009

Keywords

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

Crossrefs

Programs

  • Maple
    # Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021
    f := proc(m::integer) (1-x^m)/(1-x) ; end proc:
    g := proc(k,M) local a,i; global f;
    a:=f(k)*mul(f(2*i),i=1..k-1);
    seriestolist(series(a,x,M+1));
    end proc;
  • Mathematica
    f[m_] := (1-x^m)/(1-x);
    With[{k = 21}, CoefficientList[f[k]*Product[f[2i], {i, 1, k-1}] + O[x]^(k+1), x]] (* Jean-François Alcover, Feb 15 2023, after Maple code *)

Formula

The growth series for D_k is the polynomial f(k)*Product_{i=1..k-1} f(2*i), where f(m) = (1-x^m)/(1-x) [Corrected by N. J. A. Sloane, Aug 07 2021]. This is a row of the triangle in A162206.