A162361 Central prime factor of A014612(n).
2, 2, 3, 2, 3, 2, 3, 3, 2, 3, 5, 2, 3, 3, 2, 5, 5, 2, 3, 2, 7, 3, 3, 5, 5, 3, 2, 3, 2, 5, 5, 3, 7, 2, 3, 7, 2, 5, 5, 3, 2, 3, 5, 7, 3, 2, 5, 5, 3, 2, 3, 5, 7, 2, 7, 11, 2, 7, 3, 5, 3, 3, 7, 2, 7, 5, 3, 3, 2, 5, 11, 5, 2, 5, 2, 3, 7, 5, 2, 3, 13, 7, 5, 3, 2, 7, 11, 3, 3, 5, 11, 7, 3, 2, 7, 3, 2, 7, 5, 2, 11, 3, 5
Offset: 1
Keywords
Examples
a(1)=2 since A014612(1) = 8 = 2*2*2. a(2)=2 since A014612(2) = 12 = 2*2*3. a(3)=3 since A014612(3) = 18 = 2*3*3. a(4)=2 since A014612(4) = 20 = 2*2*5. a(5)=3 since A014612(5) = 27 = 3*3*3. a(6)=2 since A014612(6) = 28 = 2*2*7. a(7)=3 since A014612(7) = 30 = 2*3*5.
Links
- Michel Marcus, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A014612 := proc(n) option remember ; if n = 1 then 8 ; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 3 then RETURN(a) ; fi; od: fi; end: A162361 := proc(n) tpr := A014612(n) ; pf := sort(convert(numtheory[factorset](tpr),list)) ; tpr/op(1,pf)/op(-1,pf) ; end: seq(A162361(n),n=1..120) ; # R. J. Mathar, Jul 06 2009
-
Mathematica
f[n_] := With[{fi = FactorInteger[n][[All, 1]]}, n/(fi[[1]] fi[[-1]])]; f /@ Select[Range[500], PrimeOmega[#] == 3&] (* Jean-François Alcover, Aug 05 2022 *)
-
PARI
isok(n) = bigomega(n)==3; lista(nn) = {for (n=1, nn, if (isok(n), my(f=factor(n)[,1]); print1(n/(vecmin(f)*vecmax(f)), ", ")););} \\ Michel Marcus, Feb 25 2019
Formula
Extensions
Edited (but not checked) by N. J. A. Sloane, Jul 05 2009
Corrected and extended by R. J. Mathar and Ray Chandler, Jul 06 2009