cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162369 Number of reduced words of length n in the Weyl group D_27.

Original entry on oeis.org

1, 27, 377, 3627, 27026, 166230, 878409, 4098483, 17222607, 66165501, 235124461, 780112671, 2435132466, 7196829486, 20245295242, 54455027238, 140596223184, 349621224120, 839832229131, 1953829030737, 4412447681628, 9693085025844, 20750619208890, 43361428085886
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 01 2009

Keywords

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under PoincarĂ© polynomial.

Crossrefs

Programs

  • Maple
    # Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021
    f := proc(m::integer) (1-x^m)/(1-x) ; end proc:
    g := proc(k,M) local a,i; global f;
    a:=f(k)*mul(f(2*i),i=1..k-1);
    seriestolist(series(a,x,M+1));
    end proc;

Formula

The growth series for D_k is the polynomial f(k)*Prod_{i=1..k-1} f(2*i), where f(m) = (1-x^m)/(1-x) [Corrected by N. J. A. Sloane, Aug 07 2021]. This is a row of the triangle in A162206.