A162417 Find max {primes such that p < n^2, n = 2,3,...}, then the gap g(n) between that prime and its successor. This sequence is the sequence of differences {2n - g(n)}.
2, 2, 4, 4, 6, 8, 10, 14, 16, 8, 14, 20, 24, 26, 26, 24, 22, 30, 36, 38, 36, 28, 42, 38, 48, 48, 42, 44, 40, 48, 54, 62, 58, 64, 66, 68, 68, 66, 76, 58, 66, 72, 72, 80, 76, 88, 84, 86, 74, 86, 96, 90, 100, 96, 96, 92, 106, 96, 106, 114, 110, 104, 122, 120, 124, 124, 120, 114
Offset: 2
Keywords
Crossrefs
Cf. A058043.
Programs
-
Magma
[2*n-(NthPrime(#PrimesUpTo(n^2)+1)-NthPrime(#PrimesUpTo(n^2))): n in [2..100]]; // Vincenzo Librandi, Aug 02 2015
-
Maple
with(numtheory): A162417:=n->2*n-(ithprime(pi(n^2)+1)-ithprime(pi(n^2))): seq(A162417(n), n=2..100); # Wesley Ivan Hurt, Aug 01 2015
-
Mathematica
Table[2i - (Prime[PrimePi[i^2]+1]-Prime[PrimePi[i^2]]),{i,2,1000}] f[n_] := 2 n - Prime[PrimePi[n^2] + 1] + Prime[PrimePi[n^2]]; Table[ f@n, {n, 2, 69}] (* Robert G. Wilson v, Aug 17 2009 *)
Formula
a(n) = 2*n - A058043(n). - R. J. Mathar, Jul 13 2009
Extensions
Edited by N. J. A. Sloane, Jul 05 2009
Offset corrected by R. J. Mathar, Jul 13 2009
a(18) and further terms from Robert G. Wilson v, Aug 17 2009
Comments