cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162417 Find max {primes such that p < n^2, n = 2,3,...}, then the gap g(n) between that prime and its successor. This sequence is the sequence of differences {2n - g(n)}.

Original entry on oeis.org

2, 2, 4, 4, 6, 8, 10, 14, 16, 8, 14, 20, 24, 26, 26, 24, 22, 30, 36, 38, 36, 28, 42, 38, 48, 48, 42, 44, 40, 48, 54, 62, 58, 64, 66, 68, 68, 66, 76, 58, 66, 72, 72, 80, 76, 88, 84, 86, 74, 86, 96, 90, 100, 96, 96, 92, 106, 96, 106, 114, 110, 104, 122, 120, 124, 124, 120, 114
Offset: 2

Views

Author

Daniel Tisdale, Jul 02 2009

Keywords

Comments

The unproved conjecture that 2n - g(n) > 0 would imply Legendre's conjecture, since the next prime after max {p < n^2} will always occur before (n+1)^2.

Crossrefs

Cf. A058043.

Programs

  • Magma
    [2*n-(NthPrime(#PrimesUpTo(n^2)+1)-NthPrime(#PrimesUpTo(n^2))): n in [2..100]]; // Vincenzo Librandi, Aug 02 2015
  • Maple
    with(numtheory): A162417:=n->2*n-(ithprime(pi(n^2)+1)-ithprime(pi(n^2))): seq(A162417(n), n=2..100); # Wesley Ivan Hurt, Aug 01 2015
  • Mathematica
    Table[2i - (Prime[PrimePi[i^2]+1]-Prime[PrimePi[i^2]]),{i,2,1000}]
    f[n_] := 2 n - Prime[PrimePi[n^2] + 1] + Prime[PrimePi[n^2]]; Table[ f@n, {n, 2, 69}] (* Robert G. Wilson v, Aug 17 2009 *)

Formula

a(n) = 2*n - A058043(n). - R. J. Mathar, Jul 13 2009

Extensions

Edited by N. J. A. Sloane, Jul 05 2009
Offset corrected by R. J. Mathar, Jul 13 2009
a(18) and further terms from Robert G. Wilson v, Aug 17 2009