cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A162419 a(n) = sigma(n)*|A002129(n)| where sigma(n) = A000203(n).

Original entry on oeis.org

1, 3, 16, 35, 36, 48, 64, 195, 169, 108, 144, 560, 196, 192, 576, 899, 324, 507, 400, 1260, 1024, 432, 576, 3120, 961, 588, 1600, 2240, 900, 1728, 1024, 3843, 2304, 972, 2304, 5915, 1444, 1200, 3136, 7020, 1764, 3072, 1936, 5040, 6084, 1728, 2304, 14384
Offset: 1

Views

Author

Paul D. Hanna, Jul 03 2009

Keywords

Comments

A002129 forms the l.g.f. of log(Sum_{n>=0} x^(n(n+1)/2)), while A000203 forms the l.g.f. of log(1/eta(x)) where eta(x)^3 = Sum_{n>=0} (-1)^n*(2n+1)*x^(n*(n+1)/2).

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 16*x^3/3 + 35*x^4/4 + 36*x^5/5 + 48*x^6/6 + ... where exp(L(x)) is the g.f. of A162420:
exp(L(x)) = 1 + x + 2*x^2 + 7*x^3 + 16*x^4 + 28*x^5 + 57*x^6 + ...
...
Equals the term-wise product of the (unsigned) sequences:
A000203:[1, 3,4, 7,6,12,8, 15,13,18,12, 28,14,24,24, 31,18,...];
A002129:[1,-1,4,-5,6,-4,8,-13,13,-6,12,-20,14,-8,24,-29,18,...].
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, (2^(e + 1) - 1) * (2^(e + 1) - 3), ((p^(e + 1) - 1)/(p - 1))^2]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 48] (* Amiram Eldar, Jul 20 2019 *)
  • PARI
    a(n)=sigma(n)*sumdiv(n, d, (-1)^(n-d)*d)

Formula

a(2n-1) = sigma(2n-1)^2.
L.g.f.: L(x) = log(G(x)) where G(x) is the g.f. of A162420.
From Amiram Eldar, Dec 01 2022: (Start)
Multiplicative with a(2^e) = (2^(e+1)-1)*(2^(e+1)-3), and a(p^e) = ((p^(e+1)-1)/(p - 1))^2 for p > 2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = 29*zeta(3)/48 = 0.726242... . (End)
Dirichlet g.f.: (zeta(s)*zeta(s-1)^2*zeta(s-2)/zeta(2*s-2))*(7*2^(2-s)-4^(2-s)+2^s-4)/(2^s+2). - Amiram Eldar, Jan 06 2023
Showing 1-1 of 1 results.