cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162477 Expansion of (1/(1-x)^2)*c(x/(1-x)^4) where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 3, 11, 50, 255, 1391, 7939, 46821, 283081, 1745212, 10929625, 69338213, 444668749, 2877994064, 18774736487, 123321704739, 814930698217, 5413955476648, 36138368789601, 242252716083298, 1630170332414433
Offset: 0

Views

Author

Paul Barry, Jul 04 2009

Keywords

Comments

Partial sums of A162476.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n+3k+1,4k+1]CatalanNumber[k],{k,0,n}],{n,0,100}] (* Emanuele Munarini, Aug 31 2017 *)
  • Maxima
    makelist(sum(binomial(n+3*k+1,4*k+1)*binomial(2*k,k)/(k+1),k,0,n),n,0,12); /* Emanuele Munarini, Aug 31 2017 */

Formula

G.f.: 1/((1 - x)^2 - x/((1 - x)^2 - x/((1 - x)^2 - x/((1 - x)^2 - ... (continued fraction);
a(n) = Sum_{k=0..n} C(n+3k+1,n-k)*A000108(k).
Conjecture: (n+1)*a(n) +4*(1-2*n)*a(n-1) +6*(n-2)*a(n-2) +2*(7-2*n)*a(n-3) +(n-5)*a(n-4) = 0. - R. J. Mathar, Nov 17 2011
G.f.: (1 - 2*x + x^2 - sqrt(1 - 8*x + 6*x^2 - 4*x^3 + x^4))/(2*x). Remark: using this form of the g.f., it is straightforward to prove the above conjectured recurrence. - Emanuele Munarini, Aug 31 2017
G.f. A(x) satisfies: A(x) = (1 + x*A(x)^2) / (1 - x)^2. - Ilya Gutkovskiy, Jun 30 2020
G.f.: 1/G(x), where G(x) = 1 - (3*x - x^2)/(1 - x/G(x)) (continued fraction). - Nikolaos Pantelidis, Jan 08 2023