cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162484 a(1) = 2, a(2) = 8; a(n) = 2 a(n - 1) + a(n - 2) - 4*(n mod 2).

Original entry on oeis.org

2, 8, 14, 36, 82, 200, 478, 1156, 2786, 6728, 16238, 39204, 94642, 228488, 551614, 1331716, 3215042, 7761800, 18738638, 45239076, 109216786, 263672648, 636562078, 1536796804, 3710155682, 8957108168, 21624372014, 52205852196, 126036076402, 304278005000
Offset: 1

Views

Author

Sarah-Marie Belcastro, Jul 04 2009

Keywords

Comments

a(n) is the number of perfect matchings of an edge-labeled 2 X n toroidal grid graph, or equivalently the number of domino tilings of a 2 X n toroidal grid.

Examples

			a(3) = 2 a(2) + a(1) - 4*(3 mod 2) = 2*8 + 2 - 4 = 14.
		

Crossrefs

Cf. A000129.

Programs

  • Mathematica
    Fold[Append[#1, 2 #1[[#2 - 1]] + #1[[#2 - 2]] - 4 Mod[#2, 2]] &, {2, 8}, Range[3, 30]] (* or *)
    Rest@ CoefficientList[Series[-2 x (-1 - 2 x + 3 x^2 + 2 x^3)/((x - 1) (1 + x) (x^2 + 2 x - 1)), {x, 0, 30}], x] (* Michael De Vlieger, Dec 16 2017 *)
    LinearRecurrence[{2,2,-2,-1},{2,8,14,36},30] (* Harvey P. Dale, Aug 24 2018 *)

Formula

for n > 2, (1/2) ((1 + sqrt(2))^n (2 - (-2 + sqrt(2)) (-1 + sqrt(2))^(2 floor(n/2))) + (1 - sqrt(2))^n (2 + (1 + sqrt(2))^(2 floor(n/2)) (2 + sqrt(2)))) (from Mathematica's solution to the recurrence).
Pell(n) + Pell(n-2) + 2*((n-1) mod 2).
From R. J. Mathar, Jul 26 2009: (Start)
a(n)= 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) = 2*A100828(n-1).
G.f.: -2*x*(-1-2*x+3*x^2+2*x^3)/((x-1)*(1+x)*(x^2+2*x-1)).
(End)
a(n) = 1 + (-1)^n + (1-sqrt(2))^n + (1+sqrt(2))^n. - Colin Barker, Dec 16 2017