cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162509 Row sums of the absolute values of a triangular array related to the Bernoulli numbers.

Original entry on oeis.org

1, 1, 4, 20, 124, 932, 8284, 85220, 997084, 13082852, 190320604, 3040770020, 52937870044, 997533561572, 20228969244124, 439283696014820, 10170742982007004, 250110224694309092, 6510327792455418844, 178832105312143131620, 5169772417850111583964
Offset: 0

Views

Author

Peter Luschny, Jul 05 2009

Keywords

Comments

Let T(n,k) = sum_{v=0..k} (-1)^v*v*binomial(k,v)*(v+1)^(n-1) for n >= 1, k >= 1 and additionally T(0,0) = 1. Then a(n) = sum_{k=0..n} abs(T(n,k)).
a(n) = A073146(n,n-1) for n >= 1.
a(n) appears to be the total number of subsets over all chains of the poset on the powerset of {1,2,...,n-1} ordered by set inclusion. That is, a(n) = Sum_{k=0..n} A038719(n,k)*(k+1). For example a(2)=4 because there are three chains: {}; {1}; {},{1}; and there are 4 total subsets. - Geoffrey Critzer, Nov 28 2014

Crossrefs

Programs

  • Maple
    A162508 := proc(n,k) local v; if n=0 and k=0 then 1 else
    add((-1)^v*v*binomial(k,v)*(v+1)^(n-1),v=0..k) fi end:
    a := proc(n) local k; add(abs(A162508(n,k)),k=0..n) end:
  • Mathematica
    t[0, 0] = 1; t[n_, k_] := Sum[(-1)^v*v*Binomial[k, v]*(v+1)^(n-1), {v, 0, k}]; a[n_] := Sum[Abs[t[n, k]], {k, 0, n}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Jun 28 2013 *)
  • Sage
    def A162509(n):
        return add(abs(A162508(n, k)) for k in (0..n))
    [A162509(n) for n in (0..20)] # Peter Luschny, Jul 21 2014

Formula

a(n+1)=Sum_{k, 0<=k<=n} A199400(n,k) = Sum_{k, 0<=k<=n} A199335(n,k)*2^k. - Philippe Deléham, Nov 06 2011
G.f.: 1+x/(1-4x/(1-x/(1-6x/(1-2x/(1-8x/(1-3x/(1-10x/(1-4x/1-....)))))))) (continued fraction). - Philippe Deléham, Nov 22 2011
G.f.: 1 + x/Q(0), where Q(k) = 1 - x*(3*k+4) - 2*x^2*(k+1)*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 03 2013
a(n + 1) = sum {k >= 0} (k*(k + 1)^n)/2^(k + 1) for n >= 0. Comparison with the formula A000670(n) = sum {k >= 0} (k^n)/2^(k + 1) yields a(n + 1) = sum {k = 0..n} binomial(n,k)*A000670(k + 1). - Peter Bala, Jul 21 2014
a(n) ~ n! / log(2)^(n+1). - Vaclav Kotesovec, Apr 17 2018