cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162512 Dirichlet inverse of A162511.

Original entry on oeis.org

1, -1, -1, 2, -1, 1, -1, -4, 2, 1, -1, -2, -1, 1, 1, 8, -1, -2, -1, -2, 1, 1, -1, 4, 2, 1, -4, -2, -1, -1, -1, -16, 1, 1, 1, 4, -1, 1, 1, 4, -1, -1, -1, -2, -2, 1, -1, -8, 2, -2, 1, -2, -1, 4, 1, 4, 1, 1, -1, 2, -1, 1, -2, 32, 1, -1, -1, -2, 1, -1, -1, -8, -1, 1, -2, -2, 1, -1, -1, -8, 8, 1
Offset: 1

Views

Author

Gerard P. Michon, Jul 05 2009, Jul 06 2009

Keywords

Comments

The absolute value of this sequence is A162510.
The Moebius function (A008683) can be defined in terms of this sequence: A008683(n) is equal to a(n) if a(n) is odd and zero otherwise.

Crossrefs

Programs

  • Maple
    A162512 := proc(n)
        local a,f;
        a := 1;
        for f in ifactors(n)[2] do
            a := -a*(-2)^(op(2,f)-1) ;
        end do:
        return a;
    end proc:
    seq(A162512(n),n=1..100) ; # R. J. Mathar, May 20 2017
  • Mathematica
    b[n_] := (-1)^(PrimeOmega[n] - PrimeNu[n]);
    a[n_] := a[n] = If[n == 1, 1, -Sum[b[n/d] a[d], {d, Most@ Divisors[n]}]];
    Array[a, 100] (* Jean-François Alcover, Feb 17 2020 *)
  • PARI
    a(n) = my(f=factor(n)); for(i=1, #f~, f[i,1]=-(-2)^(f[i,2]-1); f[i,2]=1); factorback(f); \\ Michel Marcus, May 20 2017
    
  • Python
    from sympy import factorint
    from operator import mul
    def a(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [-(-2)**(f[i] - 1) for i in f]) # Indranil Ghosh, May 20 2017
    
  • Scheme
    (define (A162512 n) (if (= 1 n) n (* (- (expt -2 (- (A067029 n) 1))) (A162512 (A028234 n))))) ;; Antti Karttunen, May 20 2017, after the given multiplicative formula.

Formula

Multiplicative function with a(p^e)=-(-2)^(e-1) for any prime p and any positive exponent e.
a(n) = n/2 when n is a power of 4 (A000302).
a(n) = A008683(n) when n is a squarefree number (A005117).
Dirichlet g.f.: Product_{p prime} ((p^s + 1)/(p^s + 2)). - Amiram Eldar, Oct 26 2023