A162512 Dirichlet inverse of A162511.
1, -1, -1, 2, -1, 1, -1, -4, 2, 1, -1, -2, -1, 1, 1, 8, -1, -2, -1, -2, 1, 1, -1, 4, 2, 1, -4, -2, -1, -1, -1, -16, 1, 1, 1, 4, -1, 1, 1, 4, -1, -1, -1, -2, -2, 1, -1, -8, 2, -2, 1, -2, -1, 4, 1, 4, 1, 1, -1, 2, -1, 1, -2, 32, 1, -1, -1, -2, 1, -1, -1, -8, -1, 1, -2, -2, 1, -1, -1, -8, 8, 1
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- G. P. Michon, Multiplicative functions.
Programs
-
Maple
A162512 := proc(n) local a,f; a := 1; for f in ifactors(n)[2] do a := -a*(-2)^(op(2,f)-1) ; end do: return a; end proc: seq(A162512(n),n=1..100) ; # R. J. Mathar, May 20 2017
-
Mathematica
b[n_] := (-1)^(PrimeOmega[n] - PrimeNu[n]); a[n_] := a[n] = If[n == 1, 1, -Sum[b[n/d] a[d], {d, Most@ Divisors[n]}]]; Array[a, 100] (* Jean-François Alcover, Feb 17 2020 *)
-
PARI
a(n) = my(f=factor(n)); for(i=1, #f~, f[i,1]=-(-2)^(f[i,2]-1); f[i,2]=1); factorback(f); \\ Michel Marcus, May 20 2017
-
Python
from sympy import factorint from operator import mul def a(n): f=factorint(n) return 1 if n==1 else reduce(mul, [-(-2)**(f[i] - 1) for i in f]) # Indranil Ghosh, May 20 2017
-
Scheme
(define (A162512 n) (if (= 1 n) n (* (- (expt -2 (- (A067029 n) 1))) (A162512 (A028234 n))))) ;; Antti Karttunen, May 20 2017, after the given multiplicative formula.
Formula
Multiplicative function with a(p^e)=-(-2)^(e-1) for any prime p and any positive exponent e.
a(n) = n/2 when n is a power of 4 (A000302).
Dirichlet g.f.: Product_{p prime} ((p^s + 1)/(p^s + 2)). - Amiram Eldar, Oct 26 2023
Comments