cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162543 A Chebyshev transform of the large Schroeder numbers A006318.

Original entry on oeis.org

1, 2, 5, 18, 73, 312, 1391, 6406, 30235, 145478, 710951, 3519248, 17608681, 88914250, 452512229, 2318774506, 11953427329, 61948592936, 322570037543, 1686777086942, 8854240330363, 46638995523598, 246443050810895
Offset: 0

Views

Author

Paul Barry, Jul 05 2009

Keywords

Comments

Hankel transform is the Somos-4 variant A162546.

Crossrefs

Cf. A162548.

Programs

  • GAP
    a:=[2,5,18,73,312,1391];; for n in [7..30] do a[n]:=(3*(2*n-1)*a[n-1] - (4*n-5)*a[n-2] +12*(n-2)*a[n-3] -(4*n-11)*a[n-4] +3*(2*n-7)*a[n-5] -(n-5)*a[n-6])/(n+1); od; Concatenation([1], a); # G. C. Greubel, Feb 23 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-x+x^2 - Sqrt(1-6*x+3*x^2-6*x^3+x^4))/( 2*x*(1+x^2)) )); // G. C. Greubel, Feb 23 2019
    
  • Mathematica
    CoefficientList[Series[(1-x+x^2 - Sqrt[1-6*x+3*x^2-6*x^3+x^4])/(2*x*(1+x^2)), {n,0,30}], x] (* G. C. Greubel, Feb 23 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x+x^2 - sqrt(1-6*x+3*x^2-6*x^3+x^4))/( 2*x*(1+x^2))) \\ G. C. Greubel, Feb 23 2019
    
  • Sage
    ((1-x+x^2 -sqrt(1-6*x+3*x^2-6*x^3+x^4))/( 2*x*(1+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 23 2019
    

Formula

G.f.: (1/(1+x^2))*S(x/(1+x^2)), S(x) the g.f. of A006318;
G.f.: (1-x+x^2 - sqrt(1-6*x+3*x^2-6*x^3+x^4))/(2*x*(1+x^2)).
G.f.: 1/(1+x^2-2*x/(1-x/(1+x^2-2*x/(1-x/(1+x^2-2*x/(1-x/(1+x+2*x^2/(1-... (continued fraction);
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k,k)*A006318(n-2*k).
Recurrence: (n+1)*a(n) = (5-n)*a(n-6) + 3*(2*n-7)*a(n-5) + (11-4*n)*a(n-4) + 12*(n-2)*a(n-3) + (5-4*n)*a(n-2) + 3*(2*n-1)*a(n-1), n>=6. - Fung Lam, Feb 19 2014