cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A162562 a(n) = ((5+sqrt(3))*(1+sqrt(3))^n + (5-sqrt(3))*(1-sqrt(3))^n)/2.

Original entry on oeis.org

5, 8, 26, 68, 188, 512, 1400, 3824, 10448, 28544, 77984, 213056, 582080, 1590272, 4344704, 11869952, 32429312, 88598528, 242055680, 661308416, 1806728192, 4936073216, 13485602816, 36843352064, 100657909760, 275002523648
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jul 06 2009

Keywords

Comments

Binomial transform of A162813. Inverse binomial transform of A162563.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-3); S:=[ ((5+r)*(1+r)^n+(5-r)*(1-r)^n)/2: n in [0..25] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 14 2009
  • Mathematica
    LinearRecurrence[{2,2},{5,8},30] (* Harvey P. Dale, Aug 17 2013 *)

Formula

a(n) = 2*a(n-1) + 2*a(n-2) for n > 1; a(0) = 5, a(1) = 8.
G.f.: (5-2*x)/(1-2*x-2*x^2).

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 14 2009

A162814 a(n) = 6*a(n-1)-6*a(n-2) for n > 1; a(0) = 5, a(1) = 18.

Original entry on oeis.org

5, 18, 78, 360, 1692, 7992, 37800, 178848, 846288, 4004640, 18950112, 89672832, 424336320, 2007980928, 9501867648, 44963320320, 212768716032, 1006832374272, 4764381949440, 22545297451008, 106685493009408, 504841173350400
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com) and Klaus Brockhaus, Jul 14 2009

Keywords

Comments

Binomial transform of A162563. Inverse binomial transform of A162815.

Crossrefs

Programs

  • Magma
    [ n le 2 select 13*n-8 else 6*Self(n-1)-6*Self(n-2): n in [1..22] ];
  • Mathematica
    LinearRecurrence[{6,-6},{5,18},40] (* Harvey P. Dale, Mar 26 2022 *)

Formula

a(n) = ((5+sqrt(3))*(3+sqrt(3))^n+(5-sqrt(3))*(3-sqrt(3))^n)/2.
G.f.: (5-12*x)/(1-6*x+6*x^2).
Showing 1-2 of 2 results.