cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162583 G.f.: A(x) = exp( 6*Sum_{n>=1} A006519(n)*A038500(n) * x^n/n ).

Original entry on oeis.org

1, 6, 24, 78, 222, 570, 1356, 3030, 6432, 13074, 25608, 48558, 89502, 160854, 282624, 486534, 822174, 1365978, 2234400, 3602742, 5732202, 9008034, 13993320, 21503730, 32711460, 49287750, 73598280, 108968334, 160041750, 233262786
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2009

Keywords

Comments

A006519(n) = highest power of 2 dividing n and
A038500(n) = highest power of 3 dividing n.

Examples

			G.f.: A(x) = 1 + 6*x + 24*x^2 + 78*x^3 + 222*x^4 + 570*x^5 + 1356*x^6 + ...
log(A(x))/6 = x + 2*x^2/2 + 3*x^3/3 + 4*x^4/4 + x^5/5 + 6*x^6/6 + x^7/7 + 8*x^8/8 + 9*x^9/9 + ... + A006519(n)*A038500(n)*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 150; a[n_]:= SeriesCoefficient[Series[Exp[Sum[2^(IntegerExponent[k, 2] + 1)*3^(IntegerExponent[k, 3] + 1)*q^k/k, {k, 1, nmax}]], {q, 0, nmax}], n]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jul 04 2018 *)
  • PARI
    {a(n)=local(L=sum(m=1,n,6*2^valuation(m,2)*3^valuation(m,3)*x^m/m)+x*O(x^n));polcoeff(exp(L),n)}