cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162585 G.f.: A(x) = exp( Sum_{n>=1} C(2n,n)*A006519(n) * x^n/n ), where A006519(n) = highest power of 2 dividing n.

Original entry on oeis.org

1, 2, 8, 20, 114, 288, 1156, 3256, 23464, 59716, 243212, 699216, 3659988, 10265800, 42353168, 128163440, 1127515970, 2858004752, 11768578868, 34294832344, 180335471424, 513911386232, 2137413847256, 6572758142016, 41948816796852
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2009

Keywords

Comments

Compare g.f. to the g.f. of the Catalan numbers: exp( Sum_{n>=1} C(2n,n)*x^n/n ), where C(2n,n) form the central binomial coefficients (A000984).

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 10*x^3 + 146*x^4 + 282*x^5 + 826*x^6 + ...
log(A(x)) = 2*x + 12*x^2/2 + 20*x^3/3 + 280*x^4/4 + 252*x^5/5 + 1848*x^6/6 + ... + C(2n,n)*A006519(n)*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Exp[Sum[2^(IntegerExponent[k, 2])*Binomial[2*k, k]*q^k/k, {k,nmax+3}]], {q,0,nmax}], q]  (* G. C. Greubel, Jul 04 2018 *)
  • PARI
    {a(n)=local(L=sum(m=1,n,2^valuation(m,2)*binomial(2*m,m)*x^m/m)+x*O(x^n));polcoeff(exp(L),n)}