A162593 Differences of squares: T(n,n) = n^2, T(n,k) = T(n,k+1) - T(n-1,k), 0 <= k < n, triangle read by rows.
0, 1, 1, 2, 3, 4, 0, 2, 5, 9, 0, 0, 2, 7, 16, 0, 0, 0, 2, 9, 25, 0, 0, 0, 0, 2, 11, 36, 0, 0, 0, 0, 0, 2, 13, 49, 0, 0, 0, 0, 0, 0, 2, 15, 64, 0, 0, 0, 0, 0, 0, 0, 2, 17, 81, 0, 0, 0, 0, 0, 0, 0, 0, 2, 19, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 21, 121, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 23, 144
Offset: 0
Examples
From _Jon E. Schoenfield_, Jul 04 2018: (Start) Table begins . n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 ---+-------------------------------------------------- 0 | 0 1 | 1 1 2 | 2 3 4 3 | 0 2 5 9 4 | 0 0 2 7 16 5 | 0 0 0 2 9 25 6 | 0 0 0 0 2 11 36 7 | 0 0 0 0 0 2 13 49 8 | 0 0 0 0 0 0 2 15 64 9 | 0 0 0 0 0 0 0 2 17 81 10 | 0 0 0 0 0 0 0 0 2 19 100 11 | 0 0 0 0 0 0 0 0 0 2 21 121 12 | 0 0 0 0 0 0 0 0 0 0 2 23 144 ... (End)
Links
- G. C. Greubel, Rows n=0..99 of triangle, flattened
Crossrefs
Cf. A162594 (differences of cubes).
Programs
-
Mathematica
T[n_, n_] := n^2; T[n_, k_] := T[n, k] = T[n, k + 1] - T[n - 1, k]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* G. C. Greubel, Jul 04 2018 *)
Comments