A162608 Triangle read by rows in which row n lists n+1 terms, starting with n!, such that the difference between successive terms is also equal to n!.
1, 1, 2, 2, 4, 6, 6, 12, 18, 24, 24, 48, 72, 96, 120, 120, 240, 360, 480, 600, 720, 720, 1440, 2160, 2880, 3600, 4320, 5040, 5040, 10080, 15120, 20160, 25200, 30240, 35280, 40320, 40320, 80640, 120960, 161280, 201600, 241920, 282240, 322560, 362880
Offset: 0
Examples
Triangle begins: 1; 1, 2; 2, 4, 6; 6, 12, 18, 24; 24, 48, 72, 96, 120; 120, 240, 360, 480, 600, 720; 720, 1440, 2160, 2880, 3600, 4320, 5040; 5040, 10080, 15120, 20160, 25200, 30240, 35280, 40320; 40320, 80640, 120960, 161280, 201600, 241920, 282240, 322560, 362880; 362880,725760,1088640,1451520,1814400,2177280,2540160,2903040,3265920,3628800; ... Observation: It appears that rows sums = A001710(n+2).
Links
- Reinhard Zumkeller, Rows n=0..150 of triangle, flattened
Crossrefs
Programs
-
Haskell
a162608 n k = a162608_tabl !! n !! k a162608_row n = a162608_tabl !! n a162608_tabl = map fst $ iterate f ([1], 1) where f (row, n) = (row' ++ [head row' + last row'], n + 1) where row' = map (* n) row -- Reinhard Zumkeller, Mar 09 2012
-
Magma
/* As triangle */ [[Factorial(n)*k: k in [1..n+1]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 04 2015
-
Mathematica
Table[k n!, {n, 0, 8}, {k, n + 1}] // Flatten (* Michael De Vlieger, Jul 03 2015 *)
Formula
From Robert Israel, Jul 03 2015: (Start)
T(n,k) = n!*k, k = 1 .. n+1.
T(n+1,k) = (n+1)*T(n,k).
T(n,k+1) = T(n,k)+T(n,1). (End)
Comments