A162623 Triangle read by rows in which row n lists n terms, starting with n, such that the difference between successive terms is equal to n^4 - 1 = A123865(n).
1, 2, 17, 3, 83, 163, 4, 259, 514, 769, 5, 629, 1253, 1877, 2501, 6, 1301, 2596, 3891, 5186, 6481, 7, 2407, 4807, 7207, 9607, 12007, 14407, 8, 4103, 8198, 12293, 16388, 20483, 24578, 28673, 9, 6569, 13129, 19689, 26249, 32809, 39369, 45929, 52489, 10
Offset: 1
Examples
Triangle begins: 1; 2, 17; 3, 83, 163; 4, 259, 514, 769; 5, 629, 1253, 1877, 2501; 6, 1301, 2596, 3891, 5186, 6481;
Crossrefs
Programs
-
Maple
A162623 := proc(n,k) n+k*(n^4-1) ; end: seq(seq(A162623(n,k),k=0..n-1),n=1..15) ; # R. J. Mathar, Sep 27 2009
-
Mathematica
dst[n_]:=Module[{c=n^4-1},Range[n,n*c,c]]; Flatten[Join[{1},Table[dst[n],{n,2,10}]]] (* Harvey P. Dale, Jul 29 2014 *)
Formula
Row sums: n*(n^5 - n^4 + n + 1)/2. - R. J. Mathar, Jul 20 2009
Extensions
More terms from R. J. Mathar, Sep 27 2009
Comments