A162629 G.f. is the polynomial (1-x^3) * (1-x^6) * (1-x^9) * (1-x^12) * (1-x^15) * (1-x^18) * (1-x^21) * (1-x^24) * (1-x^27) * (1-x^30) * (1-x^33) * (1-x^36) / (1-x)^12.
1, 12, 78, 363, 1353, 4290, 12011, 30447, 71136, 155220, 319527, 625482, 1171742, 2111604, 3676386, 6206123, 10189047, 16311426, 25519416, 39094626, 58745103, 86713407, 125903361, 180026925, 253772454, 352995357, 484931877, 658436362
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..222
Programs
-
Magma
m:=25; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1-x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)*(1-x^33)*(1-x^36)/(1-x)^12)); // G. C. Greubel, Jul 06 2018 -
Mathematica
CoefficientList[ Series[Times @@ (1 - x^(3 Range@12))/(1 - x)^12, {x, 0, 70}], x] (* G. C. Greubel, Jul 06 2018 and slightly modified by Robert G. Wilson v, Jul 23 2018 *)
-
PARI
x='x+O('x^50); Vec((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1-x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)*(1-x^33)*(1-x^36)/(1-x)^12) \\ G. C. Greubel, Jul 06 2018
Comments