A162641 Number of even exponents in canonical prime factorization of n.
0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0
Offset: 1
Keywords
Links
Crossrefs
Programs
-
Mathematica
Table[Count[FactorInteger[n][[All, -1]], ?EvenQ], {n, 105}] (* _Michael De Vlieger, Jul 23 2017 *)
-
PARI
A162641(n) = omega(n) - omega(core(n)); \\ Antti Karttunen, Jul 23 2017
-
Scheme
(define (A162641 n) (if (= 1 n) 0 (+ (A059841 (A067029 n)) (A162641 (A028234 n))))) ;; Antti Karttunen, Jul 23 2017
Formula
a(A002035(n)) = 0.
a(A072587(n)) > 0.
Additive with a(p^e) = A059841(e). - Antti Karttunen, Jul 23 2017
From Antti Karttunen, Nov 28 2017: (Start)
a(n) <= A056170(n).
(End)
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} 1/(p*(p+1)) = 0.3302299262... (A179119). - Amiram Eldar, Dec 25 2021