A162660 Triangle read by rows: coefficients of the complementary Swiss-Knife polynomials.
0, 1, 0, 0, 2, 0, -2, 0, 3, 0, 0, -8, 0, 4, 0, 16, 0, -20, 0, 5, 0, 0, 96, 0, -40, 0, 6, 0, -272, 0, 336, 0, -70, 0, 7, 0, 0, -2176, 0, 896, 0, -112, 0, 8, 0, 7936, 0, -9792, 0, 2016, 0, -168, 0, 9, 0, 0, 79360, 0, -32640, 0, 4032, 0, -240, 0, 10, 0
Offset: 0
Examples
Triangle begins: [0] 0; [1] 1, 0; [2] 0, 2, 0; [3] -2, 0, 3, 0; [4] 0, -8, 0, 4, 0; [5] 16, 0, -20, 0, 5, 0; [6] 0, 96, 0, -40, 0, 6, 0; [7] -272, 0, 336, 0, -70, 0, 7, 0; [8] 0, -2176, 0, 896, 0, -112, 0, 8, 0; [9] 7936, 0, -9792, 0, 2016, 0, -168, 0, 9, 0;
Links
- Ayse Yilmaz Ceylan and Yilmaz Simsek, Formulae for Generalization of Touchard Polynomials with Their Generating Functions, Symmetry (2025) Vol. 17, Issue 7, Art. No. 1126. See Eq. 28 and after.
- Leonhard Euler (1735), De summis serierum reciprocarum, Opera Omnia I.14, E 41, 73-86; On the sums of series of reciprocals, arXiv:math/0506415 [math.HO], 2005-2008.
- Peter Luschny, The Swiss-Knife polynomials.
- Peter Luschny, Swiss-Knife Polynomials and Euler Numbers.
- Wikipedia, Bernoulli number.
- J. Worpitzky, Studien über die Bernoullischen und Eulerschen Zahlen, Journal für die reine und angewandte Mathematik, 94 (1883), 203-232.
Crossrefs
Programs
-
Maple
# Polynomials V_n(x): V := proc(n,x) local k,pow; pow := (n,k) -> `if`(n=0 and k=0,1,n^k); add(binomial(n,k)*euler(k)*pow(x+1,n-k),k=0..n) - pow(x,n) end: # Coefficients a(n): seq(print(seq(coeff(n!*coeff(series(exp(x*t)*tanh(t),t,16),t,n),x,k),k=0..n)),n=0..8);
-
Mathematica
skp[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*x^(n-k), {k, 0, n}]; v[n_, x_] := (skp[n, x+1]-skp[n, x-1])/2; t[n_, k_] := Coefficient[v[n, x], x, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)
-
Sage
R = PolynomialRing(QQ, 'x') @CachedFunction def skp(n, x) : # Swiss-Knife polynomials A153641. if n == 0 : return 1 return add(skp(k, 0)*binomial(n, k)*(x^(n-k)-(n+1)%2) for k in range(n)[::2]) def A162660(n,k) : return 0 if k > n else R((skp(n, x+1)-skp(n, x-1))/2)[k] matrix(ZZ, 9, A162660) # Peter Luschny, Jul 23 2012
Formula
T(n, k) = [x^(n-k)](skp(n,x+1)-skp(n,x-1))/2 where skp(n,x) are the Swiss-Knife polynomials A153641. - Peter Luschny, Jul 23 2012
E.g.f. exp(x*t)*tanh(t) = 0*(t^0/0!) + 1*(t^1/1!) + (2*x)*(t^2/2!) + (3*x^2-2)*(t^3/3!) + ...
V_n(x) = -x^n + Sum_{k=0..n} C(n,k)*Euler(k)*(x+1)^(n-k).
Comments