A162741 Fibonacci-Pascal triangle; same as Pascal triangle, but beginning another Pascal triangle to the right of each row starting at row 2.
1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1, 1, 4, 7, 7, 5, 3, 2, 1, 1, 1, 5, 11, 14, 12, 8, 5, 3, 2, 1, 1, 1, 6, 16, 25, 26, 20, 13, 8, 5, 3, 2, 1, 1, 1, 7, 22, 41, 51, 46, 33, 21, 13, 8, 5, 3, 2, 1, 1, 1, 8, 29, 63, 92, 97, 79, 54, 34, 21, 13, 8, 5, 3, 2, 1, 1
Offset: 1
Examples
. 1 . 1, 1, 1 . 1, 2, 2, 1, 1 . 1, 3, 4, 3, 2, 1, 1 . 1, 4, 7, 7, 5, 3, 2, 1, 1 . 1, 5, 11, 14, 12, 8, 5, 3, 2, 1, 1 . 1, 6, 16, 25, 26, 20, 13, 8, 5, 3, 2, 1,1 . 1, 7, 22, 41, 51, 46, 33, 21,13, 8, 5, 3, 2,1,1 . 1, 8, 29, 63, 92, 97, 79, 54, 34,21,13, 8, 5, 3,2,1,1 . 1, 9, 37, 92,155,189,176,133, 88, 55,34,21,13, 8, 5,3,2,1,1 . 1,10, 46,129,247,344,365,309,221,143, 89,55,34,21,13, 8,5,3,2,1,1 . 1,11,56,175,376,591,709,674,530,364,232,144,89,55,34,21,13,8,5,3,2,1,1 .
Links
- Reinhard Zumkeller, Rows n = 1..100 of triangle, flattened
- Richard L. Ollerton and Anthony G. Shannon, Some properties of generalized Pascal squares and triangles, Fib. Q., 36 (1998), 98-109. See Table 3.
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Programs
-
Haskell
a162741 n k = a162741_tabf !! (n-1) !! (k-1) a162741_row n = a162741_tabf !! (n-1) a162741_tabf = iterate (\row -> zipWith (+) ([0] ++ row ++ [0]) (row ++ [0,1])) [1] -- Reinhard Zumkeller, Jul 16 2013
-
Mathematica
T[, 1] = 1; T[n, k_] /; k == 2*n-2 || k == 2*n-1 = 1; T[n_, k_] := T[n, k] = T[n-1, k-1] + T[n-1, k]; Table[T[n, k], {n, 1, 9}, {k, 1, 2*n-1}] // Flatten (* Jean-François Alcover, Oct 30 2017, after Reinhard Zumkeller *)
Formula
T(n,k) = T(n-1,k-1) + T(n-1,k), T(n,1)=1 and for n>1: T(n,2*n-2) = T(n,2*n-1)=1. - Reinhard Zumkeller, Jul 16 2013
Comments