cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A162963 a(n) = 5*a(n-2) for n > 2; a(1) = 2, a(2) = 5.

Original entry on oeis.org

2, 5, 10, 25, 50, 125, 250, 625, 1250, 3125, 6250, 15625, 31250, 78125, 156250, 390625, 781250, 1953125, 3906250, 9765625, 19531250, 48828125, 97656250, 244140625, 488281250, 1220703125, 2441406250, 6103515625, 12207031250
Offset: 1

Views

Author

Klaus Brockhaus, Jul 19 2009

Keywords

Comments

Binomial transform is A162770, second binomial transform is A001077 without initial 1, third binomial transform is A162771, fourth binomial transform is A162772, fifth binomial transform is A162773.

Crossrefs

Programs

  • Magma
    [ n le 2 select 3*n-1 else 5*Self(n-2): n in [1..29] ];

Formula

a(n) = (3-(-1)^n)*5^(1/4*(2*n-1+(-1)^n))/2.
G.f.: x*(2+5*x)/(1-5*x^2).
a(n) = A026383(n) for n >= 1.

A162772 a(n) = ((2+sqrt(5))*(4+sqrt(5))^n + (2-sqrt(5))*(4-sqrt(5))^n)/2.

Original entry on oeis.org

2, 13, 82, 513, 3202, 19973, 124562, 776793, 4844162, 30208573, 188382802, 1174768113, 7325934082, 45685023413, 284894912402, 1776624041673, 11079148296962, 69090321917293, 430851944071762, 2686822011483873
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jul 13 2009

Keywords

Comments

Binomial transform of A162771. Fourth binomial transform of A162963. Inverse binomial transform of A162773.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-5); S:=[ ((2+r)*(4+r)^n+(2-r)*(4-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 19 2009

Formula

a(n) = 8*a(n-1) - 11*a(n-1) for n > 1; a(0) = 2, a(1) = 13.
G.f.: (2-3*x)/(1-8*x+11*x^2).

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 19 2009

A163066 a(n) = 12*a(n-1) - 31*a(n-2) for n > 1; a(0) = 2, a(1) = 17.

Original entry on oeis.org

2, 17, 142, 1177, 9722, 80177, 660742, 5443417, 44838002, 369310097, 3041743102, 25052304217, 206333614442, 1699381942577, 13996241263222, 115274054938777, 949405180105442, 7819366458163217, 64400836914689902, 530409682773219097
Offset: 0

Views

Author

Klaus Brockhaus, Jul 20 2009

Keywords

Comments

Binomial transform of A162773. Inverse binomial transform of A163067.

Crossrefs

Programs

  • Magma
    [ n le 2 select 15*n-13 else 12*Self(n-1)-31*Self(n-2): n in [1..20] ];
    
  • Mathematica
    CoefficientList[Series[(2-7*x)/(1-12*x+31*x^2), {x,0,50}],x] (* or *) LinearRecurrence[{12,-31}, {2,17}, 30] (* G. C. Greubel, Dec 22 2017 *)
  • PARI
    x='x+O('x^30); Vec((2-7*x)/(1-12*x+31*x^2)) \\ G. C. Greubel, Dec 22 2017

Formula

a(n) = ((2+sqrt(5))*(6+sqrt(5))^n + (2-sqrt(5))*(6-sqrt(5))^n)/2.
G.f.: (2-7*x)/(1-12*x+31*x^2).
Showing 1-3 of 3 results.