A162785 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
1, 15, 210, 2835, 38220, 514605, 6928740, 93285465, 1255955610, 16909618635, 227663487870, 3065158424055, 41267909559240, 555612506386665, 7480515990707760, 100714290692336685, 1355971748798391270
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..880
- Index entries for linear recurrences with constant coefficients, signature (13, 13, -91).
Programs
-
GAP
a:=[15, 210, 2835];; for n in [4..20] do a[n]:=13*a[n-1]+13*a[n-2] -91*a[n-3]; od; Concatenation([1], a); # G. C. Greubel, Apr 26 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^3)/(1-14*x+104*x^3-91*x^4) )); // G. C. Greubel, Apr 26 2019 -
Mathematica
CoefficientList[Series[(1+x)*(1-x^3)/(1-14*x+104*x^3-91*x^4), {x, 0, 20}], x] (* or *) coxG[{3, 91, -13}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
-
PARI
my(x='x+O('x^20)); Vec((1+x)*(1-x^3)/(1-14*x+104*x^3-91*x^4)) \\ G. C. Greubel, Apr 26 2019
-
Sage
((1+x)*(1-x^3)/(1-14*x+104*x^3-91*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
Formula
G.f.: (t^3 + 2*t^2 + 2*t + 1)/(91*t^3 - 13*t^2 - 13*t + 1).
G.f.: (1+x)*(1-x^3)/(1 - 14*x + 104*x^3 - 91*x^4). - G. C. Greubel, Apr 26 2019
Comments