cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162870 Primes p such that p-1 and p+1 each contain at least one cubed prime in their prime factorization.

Original entry on oeis.org

919, 1999, 2647, 2663, 2969, 3511, 3833, 3943, 4751, 6857, 9127, 10313, 11287, 11719, 12041, 12583, 13033, 13337, 13879, 14249, 14633, 15497, 15607, 16903, 18089, 18199, 18251, 18521, 19751, 20249, 20359, 20681, 21751, 21977, 22409
Offset: 1

Views

Author

Keywords

Comments

The selection criterion is that p-1 and p+1 are in the subsequence 8=2^3, 24=2^3*3, 27=3^3, 40=2^3*5, 54=2*3^3,... of cubeful numbers (A046099) which actually display at least one cube in their standard prime factorization (A176297).
So at least one of the e_i in p-1=product p_i^e_i, and at least one of the e_j in p+1=product p_j^e_j must equal 3. This is more restrictive than being cubeful, so the sequence becomes a subsequence of A086708.

Examples

			271 is not in the sequence although 271 - 1 = 2*3^3*5 contains a third cube in the prime factorization, because 271 + 1 = 2^4*17 does not.
919 is in the sequence because 919 - 1 = 2*3^3*17 contains a third cube in the prime factorization and so does 919 + 1 = 2^3*5*23.
		

Crossrefs

Programs

  • Maple
    isA162870 := proc(n)
        if isprime(n) then
            isA176297(n-1) and isA176297(n+1) ;
        else
            false;
        end if;
    end proc:
    for n from 1 to 40000 do
        if isA162870(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Dec 08 2015
    N:= 10^6: # to get all terms < N, where N is even
    V:= Vector(N/2):
    for i from 1 do
      p:= ithprime(i);
      if p^3 > N+1 then break fi;
      if p = 2 then inds:= 4*[seq(i,i=1..floor(N/8),2)]
      else inds:= p^3*select(t -> t mod p <> 0, [$1..floor(N/2/p^3)])
      fi;
      V[inds]:= 1;
    od:
    select(t -> V[(t-1)/2] = 1 and V[(t+1)/2] = 1 and isprime(t), [seq(t,t=3..N,2)]); # Robert Israel, Dec 08 2015
  • Mathematica
    f[n_]:=Module[{a=m=0},Do[If[FactorInteger[n][[m,2]]==3,a=1],{m,Length[FactorInteger[n]]}]; a]; lst={};Do[p=Prime[n];If[f[p-1]==1&&f[p+1]==1,AppendTo[lst,p]], {n,7!}];lst

Extensions

Role of cubefree numbers clarified by R. J. Mathar, Jul 31 2007