A162870 Primes p such that p-1 and p+1 each contain at least one cubed prime in their prime factorization.
919, 1999, 2647, 2663, 2969, 3511, 3833, 3943, 4751, 6857, 9127, 10313, 11287, 11719, 12041, 12583, 13033, 13337, 13879, 14249, 14633, 15497, 15607, 16903, 18089, 18199, 18251, 18521, 19751, 20249, 20359, 20681, 21751, 21977, 22409
Offset: 1
Keywords
Examples
271 is not in the sequence although 271 - 1 = 2*3^3*5 contains a third cube in the prime factorization, because 271 + 1 = 2^4*17 does not. 919 is in the sequence because 919 - 1 = 2*3^3*17 contains a third cube in the prime factorization and so does 919 + 1 = 2^3*5*23.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isA162870 := proc(n) if isprime(n) then isA176297(n-1) and isA176297(n+1) ; else false; end if; end proc: for n from 1 to 40000 do if isA162870(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Dec 08 2015 N:= 10^6: # to get all terms < N, where N is even V:= Vector(N/2): for i from 1 do p:= ithprime(i); if p^3 > N+1 then break fi; if p = 2 then inds:= 4*[seq(i,i=1..floor(N/8),2)] else inds:= p^3*select(t -> t mod p <> 0, [$1..floor(N/2/p^3)]) fi; V[inds]:= 1; od: select(t -> V[(t-1)/2] = 1 and V[(t+1)/2] = 1 and isprime(t), [seq(t,t=3..N,2)]); # Robert Israel, Dec 08 2015
-
Mathematica
f[n_]:=Module[{a=m=0},Do[If[FactorInteger[n][[m,2]]==3,a=1],{m,Length[FactorInteger[n]]}]; a]; lst={};Do[p=Prime[n];If[f[p-1]==1&&f[p+1]==1,AppendTo[lst,p]], {n,7!}];lst
Extensions
Role of cubefree numbers clarified by R. J. Mathar, Jul 31 2007
Comments