cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162962 a(n) = 5*a(n-2) for n > 2; a(1) = 1, a(2) = 5.

Original entry on oeis.org

1, 5, 5, 25, 25, 125, 125, 625, 625, 3125, 3125, 15625, 15625, 78125, 78125, 390625, 390625, 1953125, 1953125, 9765625, 9765625, 48828125, 48828125, 244140625, 244140625, 1220703125, 1220703125, 6103515625, 6103515625, 30517578125
Offset: 1

Views

Author

Klaus Brockhaus, Jul 19 2009

Keywords

Comments

Apparently a(n) = A074872(n+1), a(n) = A056451(n-1) for n > 1.
Binomial transform is A084057 without initial 1, second binomial transform is A048876, third binomial transform is A082762, fourth binomial transform is A162769, fifth binomial transform is A093145 without initial 0.

Crossrefs

Cf. A000351 (powers of 5), A074872 (powers of 5 repeated), A056451 (5^floor((n+1)/2)), A084057, A048876, A082762, A162769, A093145.

Programs

  • Magma
    [ n le 2 select 4*n-3 else 5*Self(n-2): n in [1..30] ];
  • Mathematica
    LinearRecurrence[{0,5},{1,5},30] (* Harvey P. Dale, Mar 18 2023 *)

Formula

a(n) = 5^((1/4)*(2*n-1+(-1)^n)).
G.f.: x*(1+5*x)/(1-5*x^2).