cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162983 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.

Original entry on oeis.org

1, 10, 90, 810, 7245, 64800, 579600, 5184000, 46366380, 414707040, 3709193760, 33175513440, 296726124240, 2653957198080, 23737339710720, 212309865780480, 1898927161041600, 16984252473131520, 151909371770042880
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[10,90,810,7245];; for n in [5..20] do a[n]:=8*(a[n-1]+a[n-2] +a[n-3]) - 36*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-9*x+44*x^4-36*x^5) )); // G. C. Greubel, Apr 28 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^4)/(1-9*x+44*x^4-36*x^5), {x,0,20}], x]
    (* or *) coxG[{4, 36, -8}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 28 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-9*x+44*x^4-36*x^5)) \\ G. C. Greubel, Apr 28 2019
    
  • Sage
    ((1+x)*(1-x^4)/(1-9*x+44*x^4-36*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
    

Formula

G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(36*t^4 - 8*t^3 - 8*t^2 - 8*t + 1).
From G. C. Greubel, Apr 28 2019: (Start)
a(n) = 8*(a(n-1) + a(n-2) + a(n-3)) - 36*a(n-4).
G.f.: (1+x)*(1-x^4)/(1 - 9*x + 44*x^4 - 36*x^5). (End)