A162989 Lesser of twin primes p such that none of p-1, p+1 and p+3 are cubefree.
69497, 416501, 474497, 632501, 960497, 1068497, 1226501, 1402871, 1464101, 1635497, 1716497, 1919429, 1986497, 2114249, 2144501, 2283497, 2645189, 3120497, 3174497, 3232751, 3305501, 3332501, 3525497, 3637169, 3998537
Offset: 1
Keywords
Examples
p=69497 and p+2=69499 are twin primes, also: p-1=69496=2^3*7*17*73 p+1=69498=2*3^5*11*13 p+3=69500=2^2*5^3*139.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
cf:= proc(n) local F; F:= ifactors(n)[2]; max(map(t->t[2],F))>=3 end proc: select(t -> isprime(t) and isprime(t+2) and cf(t-1) and cf(t+1) and cf(t+3), [seq(i,i=5..10^7,6)]); # Robert Israel, Nov 24 2020
-
Mathematica
f[m_]:=Max[Last/@FactorInteger[m]]>=3; S={};Do[If[PrimeQ[p=6x-1]&&PrimeQ[p+2]&& f[p-1]==f[p+1]==f[p+3]==True,AppendTo[S,p]],{x,1,10^6}];S
Extensions
Definition clarified by Robert Israel, Nov 24 2020