cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162989 Lesser of twin primes p such that none of p-1, p+1 and p+3 are cubefree.

Original entry on oeis.org

69497, 416501, 474497, 632501, 960497, 1068497, 1226501, 1402871, 1464101, 1635497, 1716497, 1919429, 1986497, 2114249, 2144501, 2283497, 2645189, 3120497, 3174497, 3232751, 3305501, 3332501, 3525497, 3637169, 3998537
Offset: 1

Views

Author

Zak Seidov, Jul 19 2009

Keywords

Examples

			p=69497 and p+2=69499 are twin primes, also:
p-1=69496=2^3*7*17*73
p+1=69498=2*3^5*11*13
p+3=69500=2^2*5^3*139.
		

Crossrefs

Cf. A046099.
See A162874 for another version.

Programs

  • Maple
    cf:= proc(n) local F;
        F:= ifactors(n)[2];
        max(map(t->t[2],F))>=3
    end proc:
    select(t -> isprime(t) and isprime(t+2) and cf(t-1) and cf(t+1) and cf(t+3), [seq(i,i=5..10^7,6)]); # Robert Israel, Nov 24 2020
  • Mathematica
    f[m_]:=Max[Last/@FactorInteger[m]]>=3;
    S={};Do[If[PrimeQ[p=6x-1]&&PrimeQ[p+2]&&
    f[p-1]==f[p+1]==f[p+3]==True,AppendTo[S,p]],{x,1,10^6}];S

Extensions

Definition clarified by Robert Israel, Nov 24 2020