A163069 a(n) = ((4+sqrt(5))*(1+sqrt(5))^n + (4-sqrt(5))*(1-sqrt(5))^n)/2.
4, 9, 34, 104, 344, 1104, 3584, 11584, 37504, 121344, 392704, 1270784, 4112384, 13307904, 43065344, 139362304, 450985984, 1459421184, 4722786304, 15283257344, 49457659904, 160048349184, 517927337984, 1676048072704
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,4).
Programs
-
Magma
Z
:=PolynomialRing(Integers()); N :=NumberField(x^2-5); S:=[ ((4+r)*(1+r)^n+(4-r)*(1-r)^n)/2: n in [0..23] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 21 2009 -
Mathematica
LinearRecurrence[{2, 4}, {4, 9}, 30] (* G. C. Greubel, Jan 08 2018 *)
-
PARI
x='x+O('x^30); Vec((4+x)/(1-2*x-4*x^2)) \\ G. C. Greubel, Jan 08 2018
Formula
a(n) = 2*a(n-1) + 4*a(n-2) for n > 1; a(0) = 4, a(1) = 9.
G.f.: (4+x)/(1-2*x-4*x^2).
Extensions
Edited and extended beyond a(5) by Klaus Brockhaus, Jul 21 2009
Comments