A163071 a(n) = ((4+sqrt(5))*(3+sqrt(5))^n + (4-sqrt(5))*(3-sqrt(5))^n)/2.
4, 17, 86, 448, 2344, 12272, 64256, 336448, 1761664, 9224192, 48298496, 252894208, 1324171264, 6933450752, 36304019456, 190090313728, 995325804544, 5211593572352, 27288258215936, 142883175006208, 748146017173504
Offset: 0
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6, -4).
Programs
-
Magma
Z
:=PolynomialRing(Integers()); N :=NumberField(x^2-5); S:=[ ((4+r)*(3+r)^n+(4-r)*(3-r)^n)/2: n in [0..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 21 2009 -
Mathematica
LinearRecurrence[{6,-4},{4,17},40] (* Harvey P. Dale, Feb 12 2013 *)
Formula
a(n) = 6*a(n-1) - 4*a(n-2) for n > 1; a(0) = 4, a(1) = 17.
G.f.: (4-7*x)/(1-6*x+4*x^2).
a(n) = 2^(n+1) * A000032(2*n) + 5 * 2^(n-1) * A000045(2*n) = 2^(n+1) * A005248(n) + 5 * 2^(n-1) * A001906(n). - Diego Rattaggi, Aug 02 2020
Extensions
Edited and extended beyond a(5) by Klaus Brockhaus, Jul 21 2009
Comments