A163072 a(n) = ((4+sqrt(5))*(5+sqrt(5))^n + (4-sqrt(5))*(5-sqrt(5))^n)/2.
4, 25, 170, 1200, 8600, 62000, 448000, 3240000, 23440000, 169600000, 1227200000, 8880000000, 64256000000, 464960000000, 3364480000000, 24345600000000, 176166400000000, 1274752000000000, 9224192000000000, 66746880000000000
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-20).
Programs
-
Magma
Z
:=PolynomialRing(Integers()); N :=NumberField(x^2-5); S:=[ ((4+r)*(5+r)^n+(4-r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 21 2009 -
Mathematica
LinearRecurrence[{10, -20}, {4, 25}, 30] (* G. C. Greubel, Jan 08 2018 *)
-
PARI
x='x+O('x^30); Vec((4-15*x)/(1-10*x+20*x^2)) \\ G. C. Greubel, Jan 08 2018
Formula
a(n) = 10*a(n-1) - 20*a(n-2) for n > 1; a(0) = 4, a(1) = 25.
G.f.: (4-15*x)/(1-10*x+20*x^2).
Extensions
Edited and extended beyond a(5) by Klaus Brockhaus, Jul 21 2009
Comments