A163077 Numbers k such that k$ + 1 is prime. Here '$' denotes the swinging factorial function (A056040).
0, 1, 2, 3, 4, 5, 8, 9, 14, 15, 24, 27, 31, 38, 44, 45, 49, 67, 76, 92, 99, 119, 124, 133, 136, 139, 144, 168, 171, 185, 265, 291, 332, 368, 428, 501, 631, 680, 689, 696, 765, 789, 890, 1034, 1233, 1384, 1517, 1615, 1634, 1809, 2632, 2762, 3925, 4419, 5108, 5426
Offset: 1
Keywords
Examples
0$ + 1 = 1 + 1 = 2 is prime, so 0 is in the sequence.
Links
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- Peter Luschny, Swinging Primes.
Programs
-
Maple
a := proc(n) select(x -> isprime(A056040(x)+1),[$0..n]) end:
-
Mathematica
fQ[n_] := PrimeQ[1 + 2^(n - Mod[n, 2])*Product[k^((-1)^(k + 1)), {k, n}]]; Select[ Range[0, 8660], fQ] (* Robert G. Wilson v, Aug 09 2010 *)
-
PARI
is(k) = ispseudoprime(1+k!/(k\2)!^2); \\ Jinyuan Wang, Mar 22 2020
Extensions
a(45)-a(56) from Robert G. Wilson v, Aug 09 2010