Original entry on oeis.org
1, 30, 441, 4431, 35094, 235053, 1386027, 7384578, 36192519, 165311094, 710631279, 2897149824, 11270295093, 42043460145, 151025654781, 524199355128, 1763256696537, 5762466306432, 18337081016448, 56926806819666
Offset: 0
G.f.: T_0(q) = 1 + 30*q^3 + 441*q^6 + 4431*q^9 + 35094*q^12 + ...
-
eta[q_] := q^(1/24)*QPochhammer[q]; nmax = 150; a[n_]:=SeriesCoefficient[ Series[Exp[Sum[DivisorSigma[1, k]*3^(IntegerExponent[k, 3] + 1)*q^k/k, {k, 1, 3*nmax + 1}]], {q, 0, nmax}], 3*n]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jul 03 2018 *)
-
{a(n)=local(L=sum(m=1, 3*n, 3*sigma(m)*3^valuation(m, 3)*x^m/m)+x*O(x^(3*n))); polcoeff(exp(L), 3*n)}
Original entry on oeis.org
3, 75, 969, 8964, 66975, 429096, 2442372, 12640320, 60454713, 270391857, 1141260315, 4578160257, 17554638039, 64642406670, 229486544439, 788018124312, 2624648438025, 8499852952224, 26820711864657, 82613109082410
Offset: 1
G.f.: T_1(q) = 3*q + 75*q^4 + 969*q^7 + 8964*q^10 + 66975*q^13 + ...
-
eta[q_]:= q^(1/24)*QPochhammer[q]; nmax = 150; a[n_]:= SeriesCoefficient[Series[Exp[Sum[DivisorSigma[1, k]* 3^(IntegerExponent[k, 3] + 1)*q^k/k, {k, 1, 3*nmax + 1}]], {q, 0, nmax}], 3*n + 1]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jul 03 2018 *)
-
{a(n)=local(L=sum(m=1, 3*n+1, 3*sigma(m)*3^valuation(m, 3)*x^m/m)+x*O(x^(3*n+1))); polcoeff(exp(L), 3*n+1)}
Original entry on oeis.org
9, 180, 2070, 17775, 125865, 773766, 4260645, 21453975, 100250100, 439479198, 1822654251, 7198716870, 27221451885, 98988000120, 347428124352, 1180620288702, 3894719205510, 12501561121560, 39124469772495
Offset: 2
G.f.: T_2(q) = 9*q^2 + 180*q^5 + 2070*q^8 + 17775*q^11 + 125865*q^14 + ...
Terms are divisible by 9:
T_2/9 = [1, 20, 230, 1975, 13985, 85974, 473405, 2383775, 11138900, ...].
-
eta[q_] := q^(1/24)*QPochhammer[q]; nmax = 250; a[n_]:= SeriesCoefficient[ Series[Exp[Sum[DivisorSigma[1, k]*3^(IntegerExponent[k, 3] + 1)*q^k/k, {k, 1, 3*nmax + 1}]], {q, 0, nmax}], 3*n + 2]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jul 03 2018 *)
-
{a(n)=local(L=sum(m=1, 3*n+2, 3*sigma(m)*3^valuation(m, 3)*x^m/m)+x*O(x^(3*n+2))); polcoeff(exp(L), 3*n+2)}
A162584
G.f.: A(x) = exp( 2*Sum_{n>=1} sigma(n)*A006519(n) * x^n/n ), where A006519(n) = highest power of 2 dividing n.
Original entry on oeis.org
1, 2, 8, 16, 50, 96, 240, 448, 1024, 1858, 3888, 6896, 13696, 23776, 44960, 76608, 139970, 234432, 414904, 684336, 1181568, 1921472, 3242928, 5206208, 8623104, 13679490, 22268752, 34941120, 56039936, 87036576, 137686048, 211822976
Offset: 0
G.f.: A(x) = 1 + 2*x + 8*x^2 + 16*x^3 + 50*x^4 + 96*x^5 + 240*x^6 + ...
log(A(x))/2 = x + 6*x^2/2 + 4*x^3/3 + 28*x^4/4 + 6*x^5/5 + 24*x^6/6 + 8*x^7/7 + 120*x^8/8 + ... + sigma(n)*A006519(n)*x^n/n + ...
The log of the g.f. of the Partition numbers (A000041) is:
x + 3*x^2/2 + 4*x^3/3 + 7*x^4/4 + 6*x^5/5 + 12*x^6/6 + ... + sigma(n)*x^n/n + ...
The log of the g.f. of the binary partitions (A000123) is:
x + x^2/2 + x^3/3 + 4*x^4/4 + x^5/5 + 2*x^6/6 + x^7/7 + ... + A006519(n)*x^n/n + ...
From _Paul D. Hanna_, Jul 26 2009: (Start)
BISECTIONS begin:
B_0(q) = 1 + 8*q^2 + 50*q^4 + 240*q^6 + 1024*q^8 + 3888*q^10 + ...
B_1(q) = 2*q + 16*q^3 + 96*q^5 + 448*q^7 + 1858*q^9 + 6896*q^11 + ...
where 2*B_0(q)/B_1(q) = T16B(q):
T16B = 1/q + 2*q^3 - q^7 - 2*q^11 + 3*q^15 + 2*q^19 - 4*q^23 - 4*q^27 + ...
which is a g.f. of A029839. (End)
-
eta[q_]:= q^(1/24)*QPochhammer[q]; nmax = 250; a[n_]:=SeriesCoefficient[ Series[Exp[Sum[DivisorSigma[1, k]*2^(IntegerExponent[k, 2] + 1)*q^k/k, {k, 1, nmax}]], {q, 0, nmax}], n]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jul 03 2018 *)
nmax = 40; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*2^(IntegerExponent[k, 2] + 1)*x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 20 2020 *)
nmax = 40; CoefficientList[Series[Product[1/EllipticTheta[4, 0, x^(2^k)]^(2^k), {k, 0, 1 + Log[2, nmax]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 07 2023 *)
-
{a(n)=local(L=sum(m=1,n,2*sigma(m)*2^valuation(m,2)*x^m/m)+x*O(x^n));polcoeff(exp(L),n)}
Showing 1-4 of 4 results.
Comments