A163138 G.f. satisfies: A(x) = exp( Sum_{n>=1} (2^n + A(x))^n * x^n/n ).
1, 3, 20, 329, 22584, 7938470, 12605643936, 84977963809781, 2379247465188706528, 273419351336298753589802, 128009562526607810326874017088, 242979581192696030760182903464959706
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 3*x + 20*x^2 + 329*x^3 + 22584*x^4 + 7938470*x^5 +... log(A(x)) = [2 + A(x)]*x + [2^2 + A(x)]^2*x^2/2 + [2^3 + A(x)]^3*x^3/3 +... log(A(x)*(1-xA(x))) = 2/(1-2xA(x))*x + 2^4/(1-4xA(x))^2*x^2/2 + 2^9/(1-8xA(x))^3*x^3/3 +... log(A(x)) = 3*x + 31*x^2/2 + 834*x^3/3 + 86227*x^4/4 + 39339038*x^5/5 +...
Programs
-
Mathematica
m = 12; A[] = 1; Do[A[x] = Exp[Sum[(2^n + A[x])^n x^n/n, {n, 1, m}]] + O[x]^m, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Nov 03 2019 *)
-
PARI
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (2^m+A+x*O(x^n))^m*x^m/m))); polcoeff(A, n)}
Formula
G.f.: A(x) = 1/(1-x*A(x))*exp( Sum_{n>=1} 2^(n^2)/(1 - 2^n*x*A(x))^n * x^n/n ).
Extensions
Comment corrected by Paul D. Hanna, Aug 08 2009
Comments