cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A163155 Primes of the form A001654(k) - 2.

Original entry on oeis.org

13, 271, 28284463, 12610431355437389859745050577282818321295774208230808159, 421002806942919116087256468214897259565893934905313644799059599
Offset: 1

Views

Author

Keywords

Comments

Generated at the indices k= 4, 7, 19, 133, 151, 205, 385, 475, 991, 1153 etc. of the golden rectangle numbers.

Crossrefs

Programs

  • Mathematica
    q=0;lst={};Do[f=Fibonacci[n];If[PrimeQ[f*q-2],AppendTo[lst,f*q-2]];q=f,{n,6!}];lst
    Select[#-2&/@(Times@@@Partition[Fibonacci[Range[3,300]],2,1]),PrimeQ] (* Harvey P. Dale, Aug 18 2011 *)

A163157 Primes of the form 1 + some Golden Rectangle Number.

Original entry on oeis.org

2, 3, 7, 41, 1871, 4599466948725481982057, 153554501132879618787551305057
Offset: 1

Views

Author

Keywords

Comments

Primes of the form 1+A001654(k) for some k, as actually generated by k=1, 2, 3, 5, 9, 53, 71,....
Also primes of the form Fibonacci(k)*Fibonacci(k+1)+1. - Colin Barker, Apr 08 2016
The next term (a(8)) has 1995 digits. - Harvey P. Dale, May 15 2018

Crossrefs

Programs

  • Mathematica
    q=0;lst={};Do[f=Fibonacci[n];If[PrimeQ[f*q+1],AppendTo[lst,f*q+1]];q=f, {n,3*6!}];lst
    Select[Times@@@Partition[Fibonacci[Range[100]],2,1]+1,PrimeQ] (* Harvey P. Dale, May 15 2018 *)
  • PARI
    for(k=1, 1000, if(isprime(p=fibonacci(k)*fibonacci(k+1)+1), print1(p, ","))) \\ Colin Barker, Apr 08 2016

Extensions

Slightly edited by R. J. Mathar, Jul 25 2009

A163156 Primes which are 3 less than some Golden Rectangle Number.

Original entry on oeis.org

3, 37, 101, 1867, 193864603, 2084036199823432507, 268428621074094202095020661268919214060276183552992107, 491408029979212079502411930639737155545416825790885412525976325862355865559627380323835985032165419224284422111
Offset: 1

Views

Author

Keywords

Comments

Primes of the form A001654(k)-3 for any k (actually k= 3, 5, 6, 9, 21, 45, 129, 266, 329, 330, 366, 429, 549, 570, 725, 882, 945,...)

Crossrefs

Programs

  • Mathematica
    q=0;lst={};Do[f=Fibonacci[n];If[PrimeQ[f*q-3],AppendTo[lst,f*q-3]];q=f,{n,6!}];lst
Showing 1-3 of 3 results.