cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163204 Triangle read by rows, A095989 convolved with A000670.

Original entry on oeis.org

1, 1, 2, 3, 2, 8, 13, 6, 8, 48, 75, 26, 24, 48, 368, 541, 150, 104, 144, 368, 3376, 4683, 1082, 600, 624, 1104, 3376, 35824, 47293, 9366, 4328, 3600, 4784, 10128, 35824, 430512, 545835, 94586, 37464, 25968, 27600, 43888, 107472, 430512, 5773936, 7087261, 1091670, 378344, 224784, 199088, 253200, 465712, 1291536, 5773936, 85482032
Offset: 1

Views

Author

Gary W. Adamson, Jul 23 2009

Keywords

Comments

Row sums = A000670 starting with offset 1: (1, 3, 13, 75, 541, 4683,...).
Left border = A000670, right border = A095989.
Second column: A076726. - Michel Marcus, Mar 31 2016

Examples

			First few rows of the triangle are:
1;
1, 2;
3, 2, 8;
13, 6, 8, 48;
75, 26, 24, 48, 368;
541, 150, 104, 144, 368, 3376;
4683, 1082, 600, 624, 1104, 3376, 35824;
47293, 9366, 4328, 3600, 4784, 10128, 35824, 430512;
...
		

Crossrefs

Programs

  • Mathematica
    max = 10; Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k - i - r)!), {i, 0, k - r}], {k, r, n}]; Fubini[0, 1] = 1; A000670 = Table[ Fubini[n, 1], {n, 0, max}]; s = 1 - 1/Sum[Fubini[k, 1] q^k, {k, 0, max}] + O[q]^max; A095989 = CoefficientList[s/q, q]; row[n_] := A095989[[1 ;; n]]*Reverse[A000670[[1 ;; n]]]; Table[row[n], {n, 1, max-1}] // Flatten (* Jean-François Alcover, Mar 31 2016 *)

Formula

Descending antidiagonals of a multiplication table formed by convolving A095989 with A000670, where A095989 is the INVERTi transform of A000670 starting (1, 3, 13, 75,...).

Extensions

a(23) corrected by Jean-François Alcover, Mar 31 2016
Terms a(37) onward added by G. C. Greubel, Dec 10 2016