A163212 Wilson quotients (A007619) which are primes.
5, 103, 329891, 10513391193507374500051862069
Offset: 1
Examples
The quotient (720+1)/7 = 103 is a Wilson quotient and a prime, so 103 is a member.
Links
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- Peter Luschny, Swinging Primes.
- Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, in Proceedings of CANT 2011, arXiv:1110.3113 [math.NT], 2011-2012.
- Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, Combinatorial and Additive Number Theory, CANT 2011 and 2012, Springer Proc. in Math. & Stat., vol. 101 (2014), pp. 243-255.
Programs
-
Maple
# WQ defined in A163210. A163212 := n -> select(isprime,WQ(factorial,p->1,n)):
-
Mathematica
Select[Table[p = Prime[n]; ((p-1)!+1)/p, {n, 1, 15}], PrimeQ] (* Jean-François Alcover, Jun 28 2013 *)
-
PARI
forprime(p=2, 1e4, a=((p-1)!+1)/p; if(ispseudoprime(a), print1(a, ", "))) \\ Felix Fröhlich, Aug 03 2014
Comments