cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A007619 Wilson quotients: ((p-1)! + 1)/p where p is the n-th prime.

Original entry on oeis.org

1, 1, 5, 103, 329891, 36846277, 1230752346353, 336967037143579, 48869596859895986087, 10513391193507374500051862069, 8556543864909388988268015483871, 10053873697024357228864849950022572972973, 19900372762143847179161250477954046201756097561, 32674560877973951128910293168477013254334511627907
Offset: 1

Views

Author

Keywords

Comments

Suggested by the Wilson-Lagrange Theorem: An integer p > 1 is a prime if and only if (p-1)! == -1 (mod p).
Define b(n) = ((n-1)*(n^2 - 3*n + 1)*b(n-1) - (n-2)^3*b(n-2) )/(n*(n-3)); b(2) = b(3) = 1; sequence gives b(primes).
Subsequence of the generalized Wilson quotients A157249. - Jonathan Sondow, Mar 04 2016
a(n) is an integer because of to Wilson's theorem (Theorem 80, p. 68, the if part of Theorem 81, p. 69, given in Hardy and Wright). See the first comment. `This theorem is of course quite useless as a practical test for the primality of a given number n' ( op. cit., p. 69). - Wolfdieter Lang, Oct 26 2017

Examples

			The 4th prime is 7, so a(4) = (6! + 1)/7 = 103.
		

References

  • R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 29.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, fifth edition, Oxford Science Publications, Clarendon Press, Oxford, 2003.
  • Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 277.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 234.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005450, A005451, A007540 (Wilson primes), A050299, A163212, A225672, A225906.
Cf. A261779.
Cf. A157249, A157250, A292691 (twin prime analog quotient).

Programs

Formula

a(n) = A157249(prime(n)). - Jonathan Sondow, Mar 04 2016

Extensions

Definition clarified by Jonathan Sondow, Aug 05 2011

A163210 Swinging Wilson quotients ((p-1)$ +(-1)^floor((p+2)/2))/p, p prime. Here '$' denotes the swinging factorial function (A056040).

Original entry on oeis.org

1, 1, 1, 3, 23, 71, 757, 2559, 30671, 1383331, 5003791, 245273927, 3362110459, 12517624987, 175179377183, 9356953451851, 509614686432899, 1938763632210843, 107752663194272623
Offset: 1

Views

Author

Peter Luschny, Jul 24 2009

Keywords

Examples

			The 5th prime is 11, (11-1)$ = 252, the remainder term is (-1)^floor((11+2)/2)=1. So the quotient (252+1)/11 = 23 is the 5th member of the sequence.
		

Crossrefs

Programs

  • Maple
    swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    WQ := proc(f,r,n) map(p->(f(p-1)+r(p))/p,select(isprime,[$1..n])) end:
    A163210 := n -> WQ(swing,p->(-1)^iquo(p+2,2),n);
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; a[n_] := (p = Prime[n]; (sf[p - 1] + (-1)^Floor[(p + 2)/2])/p); Table[a[n], {n, 1, 19}] (* Jean-François Alcover, Jun 28 2013 *)
    a[p_] := (Binomial[p-1, (p-1)/2] - (-1)^((p-1)/2)) / p
    Join[{1, 1}, a[Prime[Range[3,20]]]] (* Peter Luschny, May 13 2017 *)
  • PARI
    a(n, p=prime(n)) = ((p-1)!/((p-1)\2)!^2 - (-1)^(p\2))/p \\ David A. Corneth, May 13 2017

A122696 Primes of the form ((k-1)! + 1)/k.

Original entry on oeis.org

2, 5, 103, 329891, 10513391193507374500051862069
Offset: 1

Views

Author

Alexander Adamchuk, Sep 22 2006

Keywords

Comments

A163212, Wilson quotients (A007619: ((p-1)!+1)/p) which are primes, is a subsequence. Corresponding numbers n such that ((n-1)! + 1)/n is prime are listed in A050299 = {1, 5, 7, 11, 29, 773, 1321, 2621, ...}. a(6) has 1893 digits. a(7) has 3545 digits. a(8) has 7817 digits.
Except for a(1) = 2, same as A163212. - Jonathan Sondow, May 20 2013

Crossrefs

A050299 is the main entry for this sequence.

Programs

  • Mathematica
    Select[Table[((k-1)!+1)/k,{k,30}],PrimeQ] (* James C. McMahon, Nov 09 2024 *)
  • PARI
    is(n)=isprime(((n-1)!+1)/n) \\ Anders Hellström, Nov 22 2015 \\ This program actually produces A050299 - Michel Marcus, Aug 02 2016
    
  • PARI
    for(n=1, 1e2, if(((n-1)!+1)%n==0 && isprime(k=((n-1)!+1)/n), print1(k, ", "))) \\ Altug Alkan, Nov 22 2015

Formula

a(n) = A163212(n-1) = ((A050299(n)-1)! + 1)/A050299(n). - Jonathan Sondow, May 19 2013

Extensions

The next term is too large to include.
a(4) and first comment corrected by Gionata Neri, Aug 02 2016

A163211 Swinging Wilson quotients (A163210) which are primes.

Original entry on oeis.org

3, 23, 71, 757, 30671, 1383331, 245273927, 3362110459, 107752663194272623, 5117886516250502670227, 34633371587745726679416744736000996167729085703, 114326045625240879227044995173712991937709388241980425799
Offset: 1

Views

Author

Peter Luschny, Jul 24 2009

Keywords

Comments

a(14)-a(18) certified prime by Primo 4.2.0. a(17) = A163210(569) = P1239, a(18) = A163210(787) = P1812. - Charles R Greathouse IV, Dec 11 2016

Examples

			The quotient (252+1)/11 = 23 is a swinging Wilson quotient and a prime, so 23 is a member.
		

Crossrefs

Programs

  • Maple
    A163211 := n -> select(isprime,A163210(n));
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; a[n_] := (p = Prime[n]; (sf[p - 1] + (-1)^Floor[(p + 2)/2])/p); Select[PrimeQ][Table[a[n], {n, 1, 100}]] (* G. C. Greubel, Dec 10 2016 *)
  • PARI
    sf(n)=n!/(n\2)!^2
    forprime(p=2,1e3, t=sf(p-1)\/p; if(isprime(t), print1(t", "))) \\ Charles R Greathouse IV, Dec 11 2016
Showing 1-4 of 4 results.