A007619
Wilson quotients: ((p-1)! + 1)/p where p is the n-th prime.
Original entry on oeis.org
1, 1, 5, 103, 329891, 36846277, 1230752346353, 336967037143579, 48869596859895986087, 10513391193507374500051862069, 8556543864909388988268015483871, 10053873697024357228864849950022572972973, 19900372762143847179161250477954046201756097561, 32674560877973951128910293168477013254334511627907
Offset: 1
The 4th prime is 7, so a(4) = (6! + 1)/7 = 103.
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 29.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, fifth edition, Oxford Science Publications, Clarendon Press, Oxford, 2003.
- Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 277.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 234.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Robert G. Wilson v, Table of n, a(n) for n = 1..100
- Aminu Alhaji Ibrahim, Sa’idu Isah Abubaka, Aunu Integer Sequence as Non-Associative Structure and Their Graph Theoretic Properties, Advances in Pure Mathematics, 2016, 6, 409-419.
- Maxie D. Schmidt, New Congruences and Finite Difference Equations for Generalized Factorial Functions, arXiv:1701.04741 [math.CO], 2017.
- Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, in Proceedings of CANT 2011, arXiv:1110.3113 [math.NT], 2011-2012.
- Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, Combinatorial and Additive Number Theory, CANT 2011 and 2012, Springer Proc. in Math. & Stat., vol. 101 (2014), pp. 243-255.
- H. S. Wilf, Problem 10578, Amer. Math. Monthly, 104 (1997), 270.
A163210
Swinging Wilson quotients ((p-1)$ +(-1)^floor((p+2)/2))/p, p prime. Here '$' denotes the swinging factorial function (A056040).
Original entry on oeis.org
1, 1, 1, 3, 23, 71, 757, 2559, 30671, 1383331, 5003791, 245273927, 3362110459, 12517624987, 175179377183, 9356953451851, 509614686432899, 1938763632210843, 107752663194272623
Offset: 1
The 5th prime is 11, (11-1)$ = 252, the remainder term is (-1)^floor((11+2)/2)=1. So the quotient (252+1)/11 = 23 is the 5th member of the sequence.
-
swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
WQ := proc(f,r,n) map(p->(f(p-1)+r(p))/p,select(isprime,[$1..n])) end:
A163210 := n -> WQ(swing,p->(-1)^iquo(p+2,2),n);
-
sf[n_] := n!/Quotient[n, 2]!^2; a[n_] := (p = Prime[n]; (sf[p - 1] + (-1)^Floor[(p + 2)/2])/p); Table[a[n], {n, 1, 19}] (* Jean-François Alcover, Jun 28 2013 *)
a[p_] := (Binomial[p-1, (p-1)/2] - (-1)^((p-1)/2)) / p
Join[{1, 1}, a[Prime[Range[3,20]]]] (* Peter Luschny, May 13 2017 *)
-
a(n, p=prime(n)) = ((p-1)!/((p-1)\2)!^2 - (-1)^(p\2))/p \\ David A. Corneth, May 13 2017
A122696
Primes of the form ((k-1)! + 1)/k.
Original entry on oeis.org
2, 5, 103, 329891, 10513391193507374500051862069
Offset: 1
- Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, in Proceedings of CANT 2011, arXiv:1110.3113 [math.NT], 2011-2012.
- Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, Combinatorial and Additive Number Theory, CANT 2011 and 2012, Springer Proc. in Math. & Stat., vol. 101 (2014), pp. 243-255.
A050299 is the main entry for this sequence.
-
Select[Table[((k-1)!+1)/k,{k,30}],PrimeQ] (* James C. McMahon, Nov 09 2024 *)
-
is(n)=isprime(((n-1)!+1)/n) \\ Anders Hellström, Nov 22 2015 \\ This program actually produces A050299 - Michel Marcus, Aug 02 2016
-
for(n=1, 1e2, if(((n-1)!+1)%n==0 && isprime(k=((n-1)!+1)/n), print1(k, ", "))) \\ Altug Alkan, Nov 22 2015
The next term is too large to include.
a(4) and first comment corrected by
Gionata Neri, Aug 02 2016
A163211
Swinging Wilson quotients (A163210) which are primes.
Original entry on oeis.org
3, 23, 71, 757, 30671, 1383331, 245273927, 3362110459, 107752663194272623, 5117886516250502670227, 34633371587745726679416744736000996167729085703, 114326045625240879227044995173712991937709388241980425799
Offset: 1
The quotient (252+1)/11 = 23 is a swinging Wilson quotient and a prime, so 23 is a member.
-
A163211 := n -> select(isprime,A163210(n));
-
sf[n_] := n!/Quotient[n, 2]!^2; a[n_] := (p = Prime[n]; (sf[p - 1] + (-1)^Floor[(p + 2)/2])/p); Select[PrimeQ][Table[a[n], {n, 1, 100}]] (* G. C. Greubel, Dec 10 2016 *)
-
sf(n)=n!/(n\2)!^2
forprime(p=2,1e3, t=sf(p-1)\/p; if(isprime(t), print1(t", "))) \\ Charles R Greathouse IV, Dec 11 2016
Showing 1-4 of 4 results.
Comments