cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163228 A bisection of A162584.

Original entry on oeis.org

1, 8, 50, 240, 1024, 3888, 13696, 44960, 139970, 414904, 1181568, 3242928, 8623104, 22268752, 56039936, 137686048, 331039232, 780029536, 1804321074, 4102056144, 9177497600, 20225408480, 43948974720, 94236510112, 199549448704
Offset: 0

Views

Author

Paul D. Hanna, Jul 26 2009

Keywords

Examples

			G.f.: B_0(q) = 1 + 8*q^2 + 50*q^4 + 240*q^6 + 1024*q^8 + 3888*q^10 + ...
Bisection B_1(q) of A162584 begins:
B_1(q) = 2*q + 16*q^3 + 96*q^5 + 448*q^7 + 1858*q^9 + 6896*q^11 + ...
		

Crossrefs

Cf. A162584, A163229 (B_1), A029839 (T16B).

Programs

  • Mathematica
    eta[q_]:= q^(1/24)*QPochhammer[q]; nmax =250; a[n_]:= SeriesCoefficient[ Series[Exp[Sum[DivisorSigma[1, k]*2^(IntegerExponent[k, 2] + 1)*q^k/k, {k, 1, nmax}]], {q, 0, nmax}], 2*n]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jul 03 2018 *)
  • PARI
    {a(n)=local(L=sum(m=1, 2*n, 2*sigma(m)*2^valuation(m, 2)*x^m/m)+O(x^(2*n+1))); polcoeff(exp(L), 2*n)}

Formula

Define series bisections B_0(q) and B_1(q) of A162584, then
2*B_0(q)/B_1(q) = T16B(q) = q*eta(q^8)^6/(eta(q^4)^2*eta(q^16)^4),
the McKay-Thompson series of class 16B for the Monster group (A029839).