A163262 Denominators of fractions in the approximation of the square root of 2 by means of: f(n) = 3*f(n-1)/(f(n-1)^2+1); with f(1)= 1.
1, 2, 13, 493, 735853, 1619459312173, 7875984855578888541679213, 186030029004437379749629399827828117533654561726893
Offset: 1
Programs
-
Maple
f[1] := 1: for n from 2 to 10 do f[n] := 3*f[n-1]/(1+f[n-1]^2) end do: seq(denom(f[n]), n = 1 .. 8); # Emeric Deutsch, Jul 29 2009
-
PARI
f(n) = if (n==1, 1, 3*f(n-1)/(f(n-1)^2+1)); a(n) = denominator(f(n)); \\ Michel Marcus, Mar 04 2019
Extensions
a(7) and a(8) from Emeric Deutsch, Jul 29 2009
Name edited by Michel Marcus, Mar 04 2019
Comments