A163272 Numbers k such that k = A074206(k), the number of ordered factorizations of k.
0, 1, 48, 1280, 2496, 28672, 29808, 454656, 2342912, 11534336, 57409536, 218103808, 34753216512, 73014444032, 583041810432, 1305670057984, 2624225017856, 404620279021568, 467515780104192, 1014849232437248, 4446425022726144, 5806013294837760, 46545625738641408
Offset: 1
Keywords
References
- J. Sandor and B. Crstici, Handbook of Number Theory II, Springer, 2004, pp. 54-55.
Links
- David A. Corneth, Table of n, a(n) for n = 1..49 (terms < 10^30)
- Peter Brown, Number of Ordered Factorizations, 2004.
- Martin Klazar and Florian Luca, On the maximal order of numbers in the "factorisatio numerorum" problem, Journal of Number Theory, Vol. 124, No. 2 (2007), pp. 470-490.
- Arnold Knopfmacher and M. E. Mays, A survey of factorization counting functions, International Journal of Number Theory, Vol. 1, No. 4 (2005), pp. 563-581, DOI: 10.1142/S1793042105000315.
- Michael D. Miller, A recursively defined divisor function, The Fibonacci Quarterly, Vol. 13 (1975), pp. 199-204.
- Project Euler, Problem 548: Gozinta Chains.
Programs
-
Maple
A074206 := proc(n) option remember; if n <= 1 then n; else add(procname(d), d=numtheory[divisors](n) minus {n}) ; end if; end proc: for n from 1 do if n = A074206(n) then printf("%d,\n",n) ; end if; end do: \\ R. J. Mathar, Aug 01 2009
-
PARI
term(n) = {my(f = A074206(n)); if(factor(n)[, 2] == factor(f)[, 2], f, 0)}; isok(n) = term(n) == n; \\ David A. Corneth, Jul 15 2018
Extensions
a(6)-a(7) from R. J. Mathar, Aug 01 2009
a(8)-a(9) from Nathaniel Johnston, Dec 04 2010
a(10)-a(12) from Mauro Fiorentini, Dec 07 2015
a(13)-a(17) from Giovanni Resta, Jul 16 2018, following a suggestion from David A. Corneth
a(18)-a(23) from Amiram Eldar, Aug 22 2018, following the same suggestion with an extended list of terms of A025487.
Comments