cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163276 a(n) = n^6*(n+1)^2/2.

Original entry on oeis.org

0, 2, 288, 5832, 51200, 281250, 1143072, 3764768, 10616832, 26572050, 60500000, 127552392, 252315648, 473027282, 847072800, 1458000000, 2424307712, 3910286178, 6139206432, 9409176200, 14112000000, 20755401282, 29988984608
Offset: 0

Views

Author

Omar E. Pol, Jul 24 2009

Keywords

Crossrefs

Programs

  • Magma
    [n^6*(n+1)^2/2: n in [0..30]]; // Vincenzo Librandi, Dec 13 2016
  • Maple
    seq((1/2)*n^6*(n+1)^2, n = 0 .. 25); # Emeric Deutsch, Aug 01 2009
  • Mathematica
    Table[(1/2)*n^6*(n + 1)^2, {n,0,50}] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1}, {0, 2, 288, 5832, 51200, 281250, 1143072, 3764768, 10616832}, 50] (* G. C. Greubel, Dec 12 2016 *)
  • PARI
    concat([0], Vec(2*x*(1 + 135*x +1656*x^2 +4456*x^3 +3231*x^4 +585*x^5 +16*x^6)/(1-x)^9 + O(x^50))) \\ G. C. Greubel, Dec 12 2016
    

Formula

G.f.: 2*x*(1+135*x+1656*x^2+4456*x^3+3231*x^4+585*x^5+16*x^6)/(1-x)^9. - Colin Barker, May 05 2012
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi^2 + Pi^4/15 + 2*Pi^6/945 - 14 - 8*zeta(3) - 4*zeta(5).
Sum_{n>=1} (-1)^(n+1)/a(n) = 14 + 2*Pi^2/3 + 7*Pi^4/120 + 31*Pi^6/15120 - 24*log(2) - 6*zeta(3) - 15*zeta(5)/4. (End)

Extensions

Extended by Emeric Deutsch, Aug 01 2009