A163285 Triangle read by rows in which row n lists n+1 terms, starting with n^5 and ending with n^6, such that the difference between successive terms is equal to n^5 - n^4.
0, 1, 1, 32, 48, 64, 243, 405, 567, 729, 1024, 1792, 2560, 3328, 4096, 3125, 5625, 8125, 10625, 13125, 15625, 7776, 14256, 20736, 27216, 33696, 40176, 46656, 16807, 31213, 45619, 60025, 74431, 88837, 103243, 117649, 32768, 61440, 90112, 118784, 147456
Offset: 0
Examples
Triangle begins: 0; 1,1; 32,48,64; 243,405,567,729; 1024,1792,2560,3328,4096; 3125,5625,8125,10625,13125,15625; 7776,14256,20736,27216,33696,40176,46656; 16807,31213,45619,60025,74431,88837,103243,117649; 32768,61440,90112,118784,147456,176128,204800,233472,262144; 59049,111537,164025,216513,269001,321489,373977,426465,478953,531441; 100000,190000,280000,370000,460000,550000,640000,730000,820000,910000,1000000;
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Crossrefs
Programs
-
Mathematica
rw[n_]:=Range[n^5,n^6,n^5-n^4]; Join[{0,1},Flatten[Array[rw,10]]] (* Harvey P. Dale, Mar 18 2012 *)
-
PARI
A163285(n, k)=n^5 +k*(n^5 -n^4) \\ G. C. Greubel, Dec 17 2016
Comments