cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163387 Primes p such that 5(p-5)-1 and 5(p-5)+1 are twin primes.

Original entry on oeis.org

11, 17, 41, 53, 59, 89, 137, 167, 251, 263, 269, 431, 467, 563, 599, 677, 683, 809, 857, 1061, 1109, 1181, 1223, 1259, 1277, 1319, 1361, 1523, 1607, 1889, 1931, 1949, 2111, 2237, 2393, 2399, 2741, 3251, 3371, 3617, 3821, 3833, 3881, 4133, 4217, 4373, 4679
Offset: 1

Views

Author

Keywords

Comments

In other words, primes p such that 5*(p-5) is member of A014574. [From Omar E. Pol, Aug 05 2009]

Examples

			5*(11-5)=30, 5*(17-5)=60,...
		

Crossrefs

Cf. A014574, A163388 [From Omar E. Pol, Aug 05 2009]

Programs

  • Mathematica
    f1[n_]:=If[PrimeQ[n-1]&&PrimeQ[n+1],True,False]; f2[n_]:=If[f1[n]&&PrimeQ[n/5+5],True,False]; lst={};Do[If[f2[n],AppendTo[lst,n/5+5]],{n,8!}];lst
    Select[Prime[Range[700]],AllTrue[5(#-5)+{1,-1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 18 2015 *)

Extensions

Definition clarified by Omar E. Pol, Aug 05 2009