cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A163413 a(n) = 14*a(n-1) - 47*a(n-2) for n > 1; a(0) = 1, a(1) = 11.

Original entry on oeis.org

1, 11, 107, 981, 8705, 75763, 651547, 5560797, 47228449, 399840827, 3378034475, 28499963781, 240231872609, 2023747918819, 17041572850843, 143465867727309, 1207568224192705, 10163059355514347, 85527124440143723
Offset: 0

Views

Author

Klaus Brockhaus, Jul 27 2009

Keywords

Comments

Binomial transform of A163412. Inverse binomial transform of A163414.

Crossrefs

Programs

  • Magma
    [ n le 2 select 10*n-9 else 14*Self(n-1)-47*Self(n-2): n in [1..19] ];
    
  • Mathematica
    LinearRecurrence[{14,-47}, {1,11}, 50] (* G. C. Greubel, Dec 21 2016 *)
  • PARI
    Vec((1-3*x)/(1-14*x+47*x^2) + O(x^50)) \\ G. C. Greubel, Dec 21 2016

Formula

a(n) = ((1+2*sqrt(2))*(7+sqrt(2))^n + (1-2*sqrt(2))*(7-sqrt(2))^n)/2.
G.f.: (1-3*x)/(1-14*x+47*x^2).
E.g.f.: exp(7*x)*( cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Dec 21 2016

A163415 a(n) = 18*a(n-1) - 79*a(n-2) for n>1, a(0)=1, a(1)=13.

Original entry on oeis.org

1, 13, 155, 1763, 19489, 211525, 2267819, 24110267, 254827105, 2682176797, 28147841051, 294769171955, 3082165652161, 32192217154453, 335968822259435, 3504253645468043, 36535028659929409, 380794477886753965
Offset: 0

Views

Author

Klaus Brockhaus, Jul 27 2009

Keywords

Comments

Binomial transform of A163414. Inverse binomial transform of A163416.

Crossrefs

Programs

  • Magma
    [n le 2 select 12*n-11 else 18*Self(n-1)-79*Self(n-2): n in [1..18]];
    
  • Mathematica
    LinearRecurrence[{18,-79}, {1,13}, 50] (* G. C. Greubel, Dec 21 2016 *)
  • PARI
    Vec((1-5*x)/(1-18*x+79*x^2) + O(x^50)) \\ G. C. Greubel, Dec 21 2016

Formula

a(n) = ((1+2*sqrt(2))*(9+sqrt(2))^n + (1-2*sqrt(2))*(9-sqrt(2))^n)/2.
G.f.: (1-5*x)/(1-18*x+79*x^2).
E.g.f.: exp(9*x)*( cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Dec 21 2016
Showing 1-2 of 2 results.