A163425 Primes p such that (p-1)^3/8+(p+1)^2/4 is also prime.
3, 5, 7, 17, 19, 29, 31, 47, 61, 71, 79, 101, 131, 167, 181, 197, 199, 227, 251, 269, 281, 307, 359, 397, 421, 449, 461, 467, 509, 569, 659, 691, 709, 811, 859, 919, 937, 997, 1031, 1087, 1151, 1217, 1231, 1249, 1277, 1279, 1301, 1307, 1361, 1409, 1447, 1451
Offset: 1
Examples
p=3 is in the sequence because (3-1)^3/8+(3+1)^2/4=1+4=5 is also prime. p=5 is in the sequence because (5-1)^3/8+(5+1)^2/4=17 is also prime.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesInInterval(3, 2000) | IsPrime((p-1)^3 div 8 + (p+1)^2 div 4)]; // Vincenzo Librandi, Apr 08 2013
-
Mathematica
f[n_]:=((p-1)/2)^3+((p+1)/2)^2; lst={};Do[p=Prime[n];If[PrimeQ[f[p]], AppendTo[lst,p]],{n,7!}];lst Select[Prime[Range[1500]], PrimeQ[(# - 1)^3 / 8 + (# + 1)^2 / 4]&] (* Vincenzo Librandi, Apr 08 2013 *)
Extensions
Comment turned into examples by R. J. Mathar, Sep 02 2009
Comments