cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163429 Primes p such that ((p+1)/2)^3+((p-1)/2)^2 is also prime.

Original entry on oeis.org

5, 7, 11, 13, 29, 41, 53, 71, 73, 79, 97, 101, 131, 149, 179, 181, 193, 211, 227, 229, 239, 241, 269, 271, 293, 311, 313, 317, 337, 373, 401, 443, 461, 463, 503, 541, 569, 599, 601, 659, 673, 691, 769, 773, 809, 839, 857, 859, 863, 911, 919, 929, 971, 1009, 1019
Offset: 1

Views

Author

Keywords

Examples

			((5+1)/2)^3+((5-1)/2)^2=27+4=31, ((7+1)/2)^3+((7-1)/2)^2=64+9=73,..
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1100) | IsPrime(((p+1)div 2)^3+((p-1)div 2)^2)]; // Vincenzo Librandi, Apr 15 2013
  • Mathematica
    f[n_]:=((p+1)/2)^3+((p-1)/2)^2; lst={};Do[p=Prime[n];If[PrimeQ[f[p]],AppendTo[lst,p]],{n,6!}];lst
    Select[Prime[Range[200]], PrimeQ[((# + 1) / 2)^3 + ((# - 1) / 2)^2]&] (* Vincenzo Librandi, Apr 15 2013 *)