cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A163472 a(n) = 12*a(n-1) - 33*a(n-2) for n > 1; a(0) = 3, a(1) = 21.

Original entry on oeis.org

3, 21, 153, 1143, 8667, 66285, 509409, 3925503, 30295539, 234004869, 1808305641, 13977507015, 108055998027, 835414244829, 6459123003057, 49940805957327, 386138612387043, 2985616752052725, 23084826815860281, 178492568972583447
Offset: 0

Views

Author

Klaus Brockhaus, Aug 11 2009

Keywords

Comments

Binomial transform of A163471. Inverse binomial transform of A163473.

Crossrefs

Programs

  • Magma
    [ n le 2 select 18*n-15 else 12*Self(n-1)-33*Self(n-2): n in [1..20] ];
    
  • Mathematica
    LinearRecurrence[{12, -33}, {3, 21}, 50] (* G. C. Greubel, Jul 26 2017 *)
  • PARI
    x='x+O('x^50); Vec((3-15*x)/(1-12*x+33*x^2)) \\ G. C. Greubel, Jul 26 2017

Formula

a(n) = ((3+sqrt(3))*(6+sqrt(3))^n + (3-sqrt(3))*(6-sqrt(3))^n)/2.
G.f.: (3-15*x)/(1-12*x+33*x^2).
E.g.f.: exp(6*x)*( 3*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x) ). - G. C. Greubel, Jul 26 2017

A163470 a(n) = 8*a(n-1) - 13*a(n-2) for n > 1; a(0) = 3, a(1) = 15.

Original entry on oeis.org

3, 15, 81, 453, 2571, 14679, 84009, 481245, 2757843, 15806559, 90600513, 519318837, 2976744027, 17062807335, 97804786329, 560621795277, 3213512139939, 18420013780911, 105584452428081, 605215440272805
Offset: 0

Views

Author

Klaus Brockhaus, Aug 11 2009

Keywords

Comments

Binomial transform of A083881 without initial 1. Inverse binomial transform of A163471.

Crossrefs

Programs

  • Magma
    [ n le 2 select 12*n-9 else 8*Self(n-1)-13*Self(n-2): n in [1..22] ];
    
  • Mathematica
    LinearRecurrence[{8, -13}, {3, 15}, 50] (* G. C. Greubel, Jul 25 2017 *)
  • PARI
    x='x+O('x^50); Vec((3-9*x)/(1-8*x+13*x^2)) \\ G. C. Greubel, Jul 25 2017

Formula

a(n) = ((3+sqrt(3))*(4+sqrt(3))^n + (3-sqrt(3))*(4-sqrt(3))^n)/2.
G.f.: (3-9*x)/(1-8*x+13*x^2).
a(n) = 3*A162557(n). - R. J. Mathar, Jun 14 2016
E.g.f.: (1/2)*exp(4*x)*(6*cosh(sqrt(3)*x) + 2*sqrt(3)*sinh(sqrt(3)*x)). - G. C. Greubel, Jul 25 2017
Showing 1-2 of 2 results.