A163473 a(n) = 14*a(n-1) - 46*a(n-2) for n > 1; a(0) = 3, a(1) = 24.
3, 24, 198, 1668, 14244, 122688, 1062408, 9230064, 80350128, 700318848, 6108357984, 53302344768, 465248359488, 4061569173504, 35460543892608, 309615432515328, 2703431036154624, 23605724610459648, 206122316883322368
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (14,-46).
Programs
-
Magma
[ n le 2 select 21*n-18 else 14*Self(n-1)-46*Self(n-2): n in [1..19] ];
-
Mathematica
LinearRecurrence[{14, -46}, {3, 24}, 50] (* G. C. Greubel, Jul 26 2017 *)
-
PARI
x='x+O('x^50); Vec((3-18*x)/(1-14*x+46*x^2)) \\ G. C. Greubel, Jul 26 2017
Formula
a(n) = ((3+sqrt(3))*(7+sqrt(3))^n + (3-sqrt(3))*(7-sqrt(3))^n)/2.
G.f.: (3-18*x)/(1-14*x+46*x^2).
E.g.f.: exp(7*x)*( 3*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x) ). - G. C. Greubel, Jul 26 2017
Comments