A163488 Primes p such that 5*p is a sum of 3 consecutive primes.
2, 3, 47, 79, 113, 197, 227, 257, 263, 317, 347, 383, 431, 443, 491, 499, 541, 557, 617, 757, 811, 887, 929, 977, 1021, 1087, 1093, 1129, 1231, 1237, 1433, 1511, 2111, 2129, 2213, 2347, 2543, 2551, 2609, 2657, 2671, 2803, 2837, 2999, 3011, 3049, 3119, 3187
Offset: 1
Keywords
Examples
p=2 is in the sequence because 2*5=10=2+3+5. p=3 is in the sequence because 3*5=15=3+5+7.
Programs
-
Mathematica
lst={};Do[If[PrimeQ[p=(Prime[n]+Prime[n+1]+Prime[n+2])/5],AppendTo[lst, p]],{n,7!}];lst cp3Q[n_]:=Module[{mid=Floor[PrimePi[(5n)/3]],tst},tst=Total/@ Partition[ Prime[ Range[mid-10,mid+10]],3,1];MemberQ[tst,5n]]; Select[ Prime[ Range[ 500]],cp3Q]//Quiet (* Harvey P. Dale, Jan 02 2018 *)
Extensions
Entries checked by R. J. Mathar, Aug 02 2009
Comments