cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163551 13th-order Fibonacci numbers: a(n) = a(n-1) + ... + a(n-13) with a(1)=...=a(13)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 25, 49, 97, 193, 385, 769, 1537, 3073, 6145, 12289, 24577, 49153, 98305, 196597, 393169, 786289, 1572481, 3144769, 6289153, 12577537, 25153537, 50304001, 100601857, 201191425, 402358273, 804667393
Offset: 1

Views

Author

Jainit Purohit (mjainit(AT)gmail.com), Jul 30 2009

Keywords

Crossrefs

Cf. A000045 (Fibonacci numbers), A000213 (tribonacci), A000288 (tetranacci), A000322 (pentanacci), A000383 (hexanacci), A060455 (heptanacci), A123526 (octanacci), A127193 (nonanacci), A127194 (decanacci), A127624 (undecanacci), A207539 (dodecanacci).

Programs

  • Mathematica
    With[{c=Table[1,{13}]},LinearRecurrence[c,c,40]] (* Harvey P. Dale, Aug 09 2013 *)
  • PARI
    x='x+O('x^50); Vec((1-x^2 -2*x^3-3*x^4 -4*x^5-5*x^6 -6*x^7-7*x^8 -8*x^9 -9*x^10 -10*x^11 -11*x^12) / (1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13)) \\ G. C. Greubel, Jul 28 2017

Formula

a(n) = a(n-1)+a(n-2)+...+a(n-13) for n > 12, a(0)=a(1)=...=a(12)=1.
G.f.: (-1)*(-1+x^2+2*x^3+3*x^4+4*x^5+5*x^6+6*x^7+7*x^8+8*x^9+9*x^10 +10*x^11 +11*x^12) / (1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13). - Michael Burkhart, Feb 18 2012

Extensions

Values adapted to the definition by R. J. Mathar, Aug 01 2009